Electronic Supplementary Information

Iron porphyrin-catalyzed $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ amination with alkyl azides for the synthesis of complex nitrogen-containing compounds

Jianqiang Fan, ${ }^{\text {a }}$ Ye Wang, ${ }^{\text {a }}$ Xuefu Hu, ${ }^{a}$ Yungen Liu ${ }^{* a}$ and Chi-Ming Che*abcd

${ }^{a}$ Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China. E-mail: cmche@hku.hk; liuyg @sustech.edu.cn
${ }^{b}$ State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
${ }^{c}$ HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
${ }^{d}$ Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China

Table of Contents

1. General information 3
2. Nitrene insertion into benzylic $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ bonds to construct tetrahydroisoquinoline skeletons 3
Preparation of N-Boc-2-benzyl tetrahydroisoquinoline 2a and N-Boc-2-propyl tetrahydroisoquinoline $2 b$ 3
Preparation of crispine A 5
3. Nitrene insertion into unactivated $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ bonds 7
Preparation of mesembrane 7
4. Preparation of polycyclic compounds 9
Preparation of aspidospermidine 9
Preparation of benzodiazepine 11
Preparation of clavicipitic acid derivative 12
Preparation of dibenz[c,e]azepines 13
Preparation of dibenz[c,e]azepine derivative 15
5. Determination of cytotoxicity 16
6. Characterization of substrates and products 16
7. Copies of NMR Spectra 29
8. References 79

1. General information

All catalytic reactions were performed using the standard Schlenk technique under an argon atmosphere. Reagents obtained commercially were used without further purification unless indicated otherwise. Anhydrous toluene and dichloromethane (DCM) were freshly distilled with $\mathrm{Na} /$ benzophenone and CaH_{2}, respectively. TLC analysis was performed on silica gel $60 \mathrm{~F}_{254}$ pre-coated plates. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ spectra were measured on either a Bruker DPX-500 or DPX-400 spectrometer. Chemical shifts ($\delta \mathrm{ppm}$) were determined with tetramethylsilane (TMS) as internal reference or nondeuterated solvent residual signal, and coupling constants (J) were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. High resolution ESI-MS experiment was conducted using Q Exactive Mass Spectrometers (MS) (Thermo Fisher).

2. Nitrene insertion into benzylic $\mathbf{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds to construct tetrahydroisoquinoline skeletons

Preparation of N-Boc-2-benzyl tetrahydroisoquinoline 2a and N-Boc-2-propyl tetrahydroisoquinoline $2 b$

B1, $\mathrm{R}=\mathrm{Ph}, 51 \%$

B2, $R=E t, 43 \%$
$\mathrm{C} 1, \mathrm{R}=\mathrm{Bn}$
C2, $\mathrm{R}=n-\mathrm{Pr}$

1a, $R=B n, 55 \%$
1b $R=n-\operatorname{Pr} 51 \%$
2a, $\mathrm{R}=\mathrm{Bn}, 79 \%$
2b, $\mathrm{R}=n-\mathrm{Pr}, 72 \%$
Preparation of B1, B2. $n-\operatorname{BuLi}(0.62 \mathrm{~mL}, 2.50 \mathrm{~mol} / \mathrm{L})$ in hexane was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ Wittig reagent $(1.56 \mathrm{mmol})$ in anhydrous THF in a round-bottomed flask under a nitrogen atmosphere. The resulting mixture was stirred for 1 h , then 6-(2bromoethyl) benzo[$d][1,3]$ dioxole-5-carbaldehyde (1.30 mmol , synthesized according
to the literature method. ${ }^{1}$) in anhydrous THF was added. After that, the mixture is stirred at room temperature for 12 h before it was poured into ice-water. The reaction mixture was extracted with DCM and the combined organic layer was washed sequentially with saturated NaHCO_{3} solution ($30 \mathrm{~mL} \times 2$), $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$, and brine, dried over anhydrous MgSO_{4}. After evaporation under reduced pressure, the crude $\mathbf{A 1}, \mathbf{A 2}$ were directly used for the next step.

To a solution of A1, A2 $(1.00 \mathrm{mmol})$ in DMF (5.0 mL) was added sodium azide (98 $\mathrm{mg}, 1.50 \mathrm{mmol}$). The reaction mixture was stirred overnight at $80^{\circ} \mathrm{C}$ (oil bath). Water was added to the reaction mixture, and the crude product was extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 4)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to give B1 (51\%) and B2 (43\%).

Preparation of azides 1a, $\mathbf{1 b}$. To a round-bottomed flask containing $\mathbf{B}(0.80 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(0.12 \mathrm{mmol}, 10 \mathrm{wt} \%), \mathrm{EtOH}(15.0 \mathrm{~mL})$ was injected under hydrogen atmosphere (1 atm). The resulting mixture was stirred at room temperature for 12 h . After that, the mixture was filtered and washed with DCM. The filtrate was concentrated under reduced pressure and the crude product \mathbf{C} was directly used without purification for next step. 1 H -imidazole-1-sulfonyl azide (0.96 mmol) was added to a solution of \mathbf{C} in methanol (8.0 mL). Then, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.44 \mathrm{mmol})$ and anhydrous CuSO_{4} (0.04 mmol) were added. The resulting mixture was stirred at room temperature overnight. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel (PE: EA= $10: 1$) to afford $\mathbf{1 a}(55 \%)$ and $\mathbf{1 b}(51 \%)$.

Preparation of 2a, 2b. Azide $1(0.20 \mathrm{mmol})$, (Boc$)_{2} \mathrm{O}(87 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(0.004 \mathrm{mmol})$ were added to a round-bottomed flask, then the reaction flask was purged and refilled with argon for three times. Then, toluene (3.0 mL) was injected to the flask and the resulting mixture was stirred at $150^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide $\mathbf{1}$. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford the corresponding tetrahydroisoquinoline (2a, $\mathbf{7 9 \%}$ yield; $\mathbf{2 b}, \mathbf{7 2 \%}$ yield).

Preparation of crispine A

Preparation of D. A 25 mL round-bottomed flask was charged with methyl 2-(2-iodo-4,5-dimethoxyphenyl) acetate ($2.877 \mathrm{~g}, 8.56 \mathrm{mmol}$, synthesized according to the literature method. ${ }^{2}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(300 \mathrm{mg}, 0.43 \mathrm{mmol})$, and $\mathrm{CuI}(245 \mathrm{mg}, 1.28 \mathrm{mmol})$. The flask was purged and refilled with argon for three times. Triethylamine (10 mL) and but-3-yn-1-ol ($720 \mathrm{mg}, 10.27 \mathrm{mmol}$) were added by syringe subsequently, and the resulting reaction mixture was stirred at rt for 24 h . Then, triethylamine was removed under reduced pressure, and the resulting brown residue was purified by flash chromatography to afford \mathbf{D} as an orange oil (yield 81\%).

Preparation of \mathbf{E}. To a round-bottomed flask containing $\mathbf{D}(1.90 \mathrm{~g}, 6.83 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(0.68 \mathrm{mmol}, 10 \% \mathrm{w} / \mathrm{t})$ was added $\mathrm{EtOH}(10 \mathrm{~mL})$ under hydrogen atmosphere (1 atm). The mixture is stirred at room temperature for 12 h . After that, the mixture was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. The obtained residue was purified by flash column chromatography to afford \mathbf{E} (yield 80\%).

Preparation of \mathbf{F}. To a solution of $\mathbf{E}(1.545 \mathrm{~g}, 5.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ followed was added 3,4-dihydro-2H-pyran ($918 \mathrm{mg}, 10.91 \mathrm{mmol}$) and ptoluenesulfonic acid ($94 \mathrm{mg}, 0.55 \mathrm{mmol}$) subsequently. After stirring for 30 min , the reaction mixture was quenched with an aqueous solution of NaHCO_{3} (satd., 5.0 mL),
extracted with $\mathrm{EtOAc}(20 \mathrm{~mL} \times 3)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography to afford \mathbf{F} (yield 60%).

Preparation of G. To a solution of $\mathbf{F}(1.20 \mathrm{~g}, 3.27 \mathrm{mmol})$ in THF at $0^{\circ} \mathrm{C}$ (ice bath) was added $\mathrm{LiAlH}_{4}(187 \mathrm{mg}, 4.91 \mathrm{mmol})$. The resulting mixture was stirred at $70{ }^{\circ} \mathrm{C}$ until complete consumption of the \mathbf{F} (TLC monitoring). Then, after adding a minimum amount of $\mathrm{H}_{2} \mathrm{O}$ carefully to quench the excess amount of LiAlH_{4}, the reaction mixture was filtered and washed with ethyl acetate. The combined organic fraction was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford \mathbf{G} as a colorless oil (yield 86\%).

Preparation of \mathbf{H}. To a solution of $\mathbf{G}(951 \mathrm{mg}, 2.81 \mathrm{mmol})$ in dichloroethane (10.0 mL) was added p-toluenesulfonyl chloride ($803 \mathrm{mg}, 4.21 \mathrm{mmol}$), triethylamine (426 $\mathrm{mg}, 4.21 \mathrm{mmol}$) and 4 -(dimethylamino) pyridine ($35 \mathrm{mg}, 0.28 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature under atmosphere of argon for 12 h . After adding 20 mL of $\mathrm{H}_{2} \mathrm{O}$ to quench the reaction, the mixture was extracted with ethyl acetate ($30 \mathrm{~mL} \times 2$). The combined organic fraction was washed with a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford \mathbf{H} as a colorless oil (yield 72\%).

Preparation of azide 3. To a solution of $\mathbf{H}(1.00 \mathrm{~g}, 1.95 \mathrm{mmol})$ in DMF $(10.0 \mathrm{~mL})$ was added sodium azide ($190 \mathrm{mg}, 2.93 \mathrm{mmol}$). The reaction mixture was stirred overnight at rt. Water was added to the reaction mixture, and the crude product was extracted with diethyl ether $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 4)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to give $\mathbf{3}$ (yield 81%).

Preparation of tetrahydroisoquinoline 4. Azide 3 ($218 \mathrm{mg}, 0.60 \mathrm{mmol}$), (Boc) $)_{2} \mathrm{O}$ ($262 \mathrm{mg}, 1.20 \mathrm{mmol}$) and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(15.4 \mathrm{mg}, 0.012 \mathrm{mmol})$ were added to a round-bottomed flask, then the reaction flask was purged and refilled with argon for three times. Then, toluene (3.0 mL) was injected to the flask and the resulting mixture was stirred at $150{ }^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide 3. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford the corresponding tetrahydroisoquinoline 4 (yield 72\%).

Preparation of 5. A mixture of tetrahydroisoquinoline 4 ($190 \mathrm{mg}, 0.44 \mathrm{mmol}$) and a catalytic amount of recrystallised 4-toluene sulphonic acid ($7.6 \mathrm{mg}, 0.044 \mathrm{mmol}$) in methanol (8.8 mL) was stirred for 10 h at $25^{\circ} \mathrm{C}$. Subsequently, sodium bicarbonate was added, and the solution was concentrated to one third. After diluting with brine, the aqueous suspension was extracted 4 times with diethyl ether. The combined ether
extracts were dried with magnesium sulphate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to afford the product 5 (yield 73%). Crispine A could be synthesized from 5 according to the literature method. ${ }^{3}$

3. Nitrene insertion into unactivated $\mathbf{C}\left(\mathbf{s p}^{3}\right)-H$ bonds

Preparation of mesembrane

Preparation of I. A mixture of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}(4.144 \mathrm{~g}, 11.60 \mathrm{mmol})$ and t-BuOK $(1.301 \mathrm{~g}, 11.60 \mathrm{mmol})$ in anhydrous THF was stirred under argon atmosphere for half an hour. Then, 1-(3,4-dimethoxyphenyl) cyclohexane-1-carbaldehyde ($2.399 \mathrm{~g}, 9.66$ mmol, synthesized according to the literature method. ${ }^{4}$) in THF was added and the reaction mixture was further stirred at rt for 18 h . After dilution with water, the mixture was extracted with DCM, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel to afford \mathbf{I} (yield 76\%).

Preparation of \mathbf{J}. To a stirred solution of $\mathbf{I}(700 \mathrm{mg}, 2.84 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ under a nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{THF}(3.41 \mathrm{~mL}, 3.41 \mathrm{mmol}, 1.0$ $\mathrm{mol} / \mathrm{L}$), and the resulting mixture was stirred for 3 h at room temperature. Then, the mixture is cooled to $0{ }^{\circ} \mathrm{C}$, water (2.0 mL) is added dropwise and followed by addition of 10% aqueous sodium hydroxide solution (5 mL) and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (1.5 mL). After stirring for another 30 min , the reaction mixture was extracted with diethyl ether
$(20 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel to afford \mathbf{J} (yield 77%).

Preparation of \mathbf{K}. To a solution of $\mathbf{J}(500 \mathrm{mg}, 1.89 \mathrm{mmol})$ in dichloroethane (10.0 mL) was added p-toluenesulfonyl chloride ($541 \mathrm{mg}, 2.83 \mathrm{mmol}$), triethylamine (286 $\mathrm{mg}, 2.83 \mathrm{mmol}$) and 4 -(dimethylamino) pyridine ($23 \mathrm{mg}, 0.189 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature under atmosphere of argon for 12 h . After adding 20 mL of $\mathrm{H}_{2} \mathrm{O}$ to quench the reaction, the mixture was extracted with ethyl acetate ($30 \mathrm{~mL} \times 2$). The combined organic fraction was washed with a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford \mathbf{K} as a colorless oil (yield 89\%).

Preparation of azide 6. To a solution of $\mathbf{K}(700 \mathrm{mg}, 1.67 \mathrm{mmol})$ in DMF (10.0 mL) was added sodium azide ($163 \mathrm{mg}, 2.51 \mathrm{mmol}$). The reaction mixture was stirred overnight at rt . Water was added to the reaction mixture, and the crude product was extracted with diethyl ether $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 4)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to give $\mathbf{6}$ (yield 83%).

Preparation of 7. Azide $6(58 \mathrm{mg}, 0.20 \mathrm{mmol})$, (Boc) $)_{2} \mathrm{O}(87 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(5.1 \mathrm{mg}, 0.004 \mathrm{mmol})$ were added to a round-bottomed flask, then the reaction flask was purged and refilled with argon for three times. Then, toluene $(3.0 \mathrm{~mL})$ was injected to the flask and the resulting mixture was stirred at $150^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide $\mathbf{6}$. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford 7 (yield 95\%). Mesembrane could be synthesized from 7 according to the literature method. ${ }^{5}$

4. Preparation of polycyclic compounds

Preparation of aspidospermidine

Preparation of \mathbf{L}. To a stirred solution of (3-ethyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl) methanol ($1.147 \mathrm{~g}, 5.00 \mathrm{mmol}$, synthesized according to the literature method. ${ }^{6}$) in dry DCM (10.0 mL) were added dry DMSO (5.0 mL) and dry triethylamine (5.0 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. After adding solid $\mathrm{SO}_{3} \cdot \mathrm{Py}(955 \mathrm{mg}, 6.00 \mathrm{mmol})$ portionwise at the same temperature, the reaction mixture was slowly warmed to room temperature and stirred for 2 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the reaction mixture and extracted with DCM (20 mL $\times 3$), the combined organic fraction was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography to afford \mathbf{L} (yield 87\%).

Preparation of \mathbf{M}. To a solution of $\mathbf{L}(950 \mathrm{mg}, 4.18 \mathrm{mmol})$, diethyl cyanomethylphosphonate ($1.051 \mathrm{~g}, 5.93 \mathrm{mmol}$) in 5.0 mL of anhydrous THF was added lithium hydroxide ($150 \mathrm{mg}, 6.27 \mathrm{mmol}$). The reaction mixture was heated to reflux for 20 h under argon atmosphere and then concentrated under reduce pressure. Diethyl ether (20 mL) was added to the resulting residue and washed with water $(10 \mathrm{~mL} \times 2$) and brine (10 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated
under reduced pressure. The residue was purified by silica-gel column chromatography to afford \mathbf{M} (yield 83\%).

Preparation of \mathbf{N}. To a round-bottomed flask containing $\mathbf{M}(850 \mathrm{mg}, 3.40 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(0.40 \mathrm{mmol}, 10 \mathrm{wt} \% \mathrm{Pd}), \mathrm{EtOH}(10.0 \mathrm{~mL})$ was injected under hydrogen atmosphere (1 atm). The resulting mixture was stirred at room temperature for 18 h . After that, the mixture was filtered and washed with EtOH . The filtrate was concentrated under reduced pressure and the was purified by flash column chromatography on silica gel to afford \mathbf{N} (yield 80%). ${ }^{7}$

Preparation of \mathbf{O}. To a solution of $\mathbf{N}(601 \mathrm{mg}, 2.38 \mathrm{mmol})$ in DCM $(5.0 \mathrm{~mL})$ was added diisobutyl aluminium hydride ($677 \mathrm{mg}, 4.76 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and further stirred for 2 h at this temperature, and then gradually rose to room temperature. The reaction mixture was quenched with saturated sodium bicarbonate, extracted with DCM ($15 \mathrm{~mL} \times 3$), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford \mathbf{O} (yield 77%).

Preparation of \mathbf{P}. To a solution of $\mathbf{O}(450 \mathrm{mg}, 1.76 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.64 \mathrm{mmol})$ in portion at $0{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at room temperature overnight. After that, the reaction mixture was diluted with water, extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash colunmn chromatography on silica gel to afford \mathbf{P} (yield 86\%).

Preparation of \mathbf{Q}. To a solution of $\mathbf{P}(350 \mathrm{mg}, 1.36 \mathrm{mmol})$ in anhydrous DCM (5.0 mL) were added DMAP ($17 \mathrm{mg}, 0.13 \mathrm{mmol}$), $\mathrm{TsCl}(389 \mathrm{mg}, 2.04 \mathrm{mmol})$ and triethylamine ($206 \mathrm{mg}, 2.04 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature under atmosphere of argon overnight. After adding 20 mL of $\mathrm{H}_{2} \mathrm{O}$ to quench the reaction, the mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$, dried over MgSO_{4} and concentrated under reduced pressure. The obtained residue was purified by flash colunmn chromatography on silica gel to afford \mathbf{Q} (yield 81%).

Preparation of azide 8. To a solution of $\mathbf{Q}(400 \mathrm{mg}, 0.97 \mathrm{mmol})$ in anhydrous DMF (6.0 mL) was added $\mathrm{NaN}_{3}(95 \mathrm{mg}, 1.46 \mathrm{mmol})$ in portion. The mixture was stirred at room temperature overnight. Water was added to the reaction mixture, and the crude product was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic layer was washed with water to remove DMF , dried over MgSO_{4} filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford 8 (yield 89\%).

Preparation of 9. Azide 8 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$), (Boc$)_{2} \mathrm{O}(0.80 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(5.1 \mathrm{mg}, 0.0040 \mathrm{mmol})$ were added to a round-bottomed flask,
then the reaction flask was purged and refilled with argon for three times. Then, toluene $(2.0 \mathrm{~mL})$ was injected to the flask and the resulting mixture was stirred at $150^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide 3. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford 9 (yield 46\%).

Preparation of 10. A solution of $9(40 \mathrm{mg}, 0.088 \mathrm{mmol})$ in anhydrous DCM $(2.0$ mL) was added $\mathrm{CF}_{3} \mathrm{COOH}(0.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for one hour, and then warmed to room temperature and further stirred for 6 h . After addition of saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dropwise to adjust the pH around $8 \sim 9$, the reaction mixture was extracted with DCM , dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford $\mathbf{1 0}$ (yield $\mathbf{6 5 \%}$). Crystals of $\mathbf{1 0 \bullet} \mathbf{H C l}$ suitable for X-ray diffraction were grown by layering hexane onto a concentrated dichloromethane solution at room temperature. Aspidospermidine could be synthesized from $\mathbf{1 0}$ according to the literature method. ${ }^{6}$

Preparation of benzodiazepine

Preparation of azide 11. To a solution of N-(2-benzylphenyl)-2-bromoacetamide ($304 \mathrm{mg}, 1.00 \mathrm{mmol}$, synthesized according to the literature method. ${ }^{8}$) in DMF (5.0 mL) was added $\mathrm{NaN}_{3}(98 \mathrm{mg}, 1.50 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 18 h . The reaction mixture was poured into water $(10 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times$ 4), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford $\mathbf{1 1}$ (yield 79\%).

Preparation of benzodiazepine 12. Azide 11 ($54 \mathrm{mg}, 0.20 \mathrm{mmol}$), (Boc$)_{2} \mathrm{O}$ (87 $\mathrm{mg}, 0.40 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(5.1 \mathrm{mg}, 0.004 \mathrm{mmol})$ were added to a round-bottomed flask, then the reaction flask was purged and refilled with argon for three times. Then, toluene (3.0 mL) was injected to the flask and the resulting mixture was stirred at $150{ }^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford $\mathbf{1 2}$ (85% yield).

Preparation of clavicipitic acid derivative

Preparation of R. To a solution of (S)-2-azido-3-(4-(3-methylbut-2-en-1-yl)-1H-indol-3-yl) propanoic acid ($119 \mathrm{mg}, 0.40 \mathrm{mmol}$, synthesized according to the literature method. ${ }^{9}$) in anhydrous MeOH were added dimethylaminopyridine ($9.8 \mathrm{mg}, 0.08 \mathrm{mmol}$) and dicyclohexylcarbodiimide ($165 \mathrm{mg}, 0.80 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature overnight. Upon reaction completion checked by TLC, the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel to afford \mathbf{R} (yield 82%).

Preparation of 13. To a solution of $\mathbf{R}(81 \mathrm{mg}, 0.26 \mathrm{mmol})$ in anhydrous THF were added dimethylaminopyridine ($6.4 \mathrm{mg}, 0.052 \mathrm{mmol}$) and di-tert-butyl-dicarbonate (63 $\mathrm{mg}, 0.29 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature overnight. Upon reaction completion checked by TLC, the reaction mixture concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel to afford azide $\mathbf{1 3}$ (yield 91\%).

Preparation of clavicipitic acid derivative 14. Azide 13 ($83 \mathrm{mg}, 0.20 \mathrm{mmol}$), $(\mathrm{Boc})_{2} \mathrm{O}(0.40 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}(5.1 \mathrm{mg}, 0.004 \mathrm{mmol})$ were added to a round-bottomed flask, then the reaction flask was purged and refilled with argon for three times. Then, toluene (3.0 mL) was injected to the flask and the resulting mixture was stirred at $150{ }^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford $\mathbf{1 4}$ (45% yield). ${ }^{10}$

Preparation of dibenz[c,e]azepines

Preparation of 2-(benzyloxy)-4-ethyl-1-methoxybenzene. A mixture of (bromomethyl) benzene ($3.70 \mathrm{~g}, 21.68 \mathrm{mmol}$), 5-ethyl-2-methoxyphenol ($3.00 \mathrm{~g}, 19.71$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.16 \mathrm{~g}, 59.14 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ overnight. Then, the reaction mixture was concentrated under reduced pressure, diluted with water, extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash column chromatography to afford 2-(benzyloxy)-4-ethyl-1-methoxybenzene in 81% yield.

Preparation of 1-(benzyloxy)-4-bromo-5-ethyl-2-methoxybenzene. To a solution of 2-(benzyloxy)-4-ethyl-1-methoxybenzene ($2.00 \mathrm{~g}, 8.25 \mathrm{mmol}$) in ethyl acetate (10.0 mL) were added $\mathrm{HBr}\left(735 \mathrm{mg}, 48 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 19.71 \mathrm{mmol}\right)$ and DMSO ($709 \mathrm{mg}, 9.07$ mmol) and the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. Then, the reaction mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash column chromatography to afford 1-(benzyloxy)-4-bromo-5-ethyl-2-methoxybenzene in 80% yield.

Preparation of S1, S2 (With S2 as an example). To a solution of 1-bromo-2-ethyl-4,5-dimethoxybenzene ($2.50 \mathrm{~g}, 10.20 \mathrm{mmol}$) in anhydrous dioxane (20 mL) were added $\mathrm{AcOK}(3.003 \mathrm{~g}, 30.6 \mathrm{mmol}), \mathrm{B}(\mathrm{pin})_{2}(3.108 \mathrm{~g}, 12.24 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dpppf}) \mathrm{Cl}_{2}(746 \mathrm{mg}$, $1.02 \mathrm{mmol})$ under argon. The resulting reaction mixture was stirred with reflux overnight. After adding water, the mixture was extracted with DCM, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford $\mathbf{S 2}$ (yield 76\%).

Preparation of T1, T2 (With T2 as an example). A flask charged with S2 (2.00 $\mathrm{g}, 6.84 \mathrm{mmol}$), methyl 2-iodo-3,4,5-trimethoxybenzoate ($2.408 \mathrm{~g}, 6.84 \mathrm{mmol}$, synthesized according to the literature method. ${ }^{11}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(314 \mathrm{mg}, 0.342 \mathrm{mmol}), \mathrm{S}-$ Phos ($280 \mathrm{mg}, 0.684 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4726 \mathrm{mg}, 34.1 \mathrm{mmol})$ was purged and refilled three times with argon. Then, $\mathrm{PhMe}(30 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added to the reaction mixture and the resulting mixture was stirred with reflux for 36 h . The reaction mixture was extracted with ethyl acetate, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford $\mathbf{T 2}$ (yield 30\%).

Preparation of U1, U2 (With U2 as an example). To a solution of T2 $(800 \mathrm{mg}$, $2.05 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (ice bath) was added $\mathrm{LiAlH}_{4}(156 \mathrm{mg}, 4.10 \mathrm{mmol})$ in THF (4.0 mL) under argon, The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ until complete consumption of the $\mathbf{T} \mathbf{2}$ (TLC monitoring). Then, the reaction mixture was quenched with isopropanol, filtered and washed with ethyl acetate. The combined organic fraction was purified by flash column chromatography on silica gel to afford $\mathbf{U 2}$ (yield 75%).

Preparation of V1, V2 (With V2 as an example). To a solution of U2 (550 mg , 1.293 mmol) in anhydrous DCM (13.0 mL) was added $\mathrm{PBr}_{3}(420 \mathrm{mg}, 1.55 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred from ice-water bath to rt for 3 h . After that, the reaction mixture was diluted with saturated NaHCO_{3}, extracted with ethyl acetate, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford $\mathbf{V 2}$ (yield 77\%).

Preparation of azide 15a, 15b (With 15b as an example). To a solution of V2 ($425 \mathrm{mg}, 1.00 \mathrm{mmol}$) in DMF (10.0 mL) was added to $\mathrm{NaN}_{3}(98 \mathrm{mg}, 1.50 \mathrm{mmol})$. The reaction mixture was stirred overnight at $110{ }^{\circ} \mathrm{C}$ for 36 h (monitoring by GC-MS). Upon reaction completion checked by TLC, the reaction mixture was diluted with water, extracted with ethyl acetate. The combined organic phase was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to azide 15b (yield 83\%).

Preparation of dibenz[c,e]azepine 16a, 16b (With 16b as an example). Azide $\mathbf{1 5 b}$ ($300 \mathrm{mg}, 0.774 \mathrm{mmol}$), (Boc$)_{2} \mathrm{O}(338 \mathrm{mg}, 1.549 \mathrm{mmol})$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TDCPP})(\mathrm{IMe})_{2}\right] \mathrm{I}$ $(19.9 \mathrm{mg}, 1.54 \% \mathrm{mmol})$ were added to a round-bottomed flask, then the flask was
purged and refilled with argon for three times. Then, toluene $(7.0 \mathrm{~mL})$ was injected to the flask and the resulting mixture was stirred at $150{ }^{\circ} \mathrm{C}$ (oil bath) for 0.5 h . TLC analysis showed the complete consumption of azide. After evaporation under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford 16b (yield 87\%).

Preparation of dibenz[c,e]azepine derivative

Preparation of ethyl 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetate. To a mixture of 1-(3,4-dichlorophenyl) piperazine ($462 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}$, 3.0 mmol) in anhydrous acetone was added ethyl 2-bromoacetate ($400 \mathrm{mg}, 2.40 \mathrm{mmol}$) under argon. The reaction mixture was stirred with reflux for 8 h . Upon reaction completion checked by TLC, the reaction mixture was diluted with water, extracted with DCM, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column on silica gel to afford ethyl 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetate (yield 87\%).

Preparation of 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetic acid hydrochloride. ${ }^{12}$ A solution of ethyl 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetate $(500 \mathrm{mg}, 1.58 \mathrm{mmol})$ in $4 \mathrm{M} \mathrm{NaOH}(5.0 \mathrm{~mL})$ and $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ overnight. Upon reaction completion checked by TLC, the reaction mixture was acidified to pH 2 by 2 M HCl at $0^{\circ} \mathrm{C}$ and stirred for another 0.5 h . Then, the reaction mixture was washed with petroleum ether and the aqueous phase was concentrated under reduced pressure. The residue was dissolved with methanol, filtered through

Celite545® and concentrated to afford 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetic acid hydrochloride as a white amorphous powder and was used for the next step directly.

Preparation of 17. To a solution of $\mathbf{1 6}(300 \mathrm{mg}, 0.652 \mathrm{mmol})$ in DCM $(6.0 \mathrm{~mL})$ was added $\mathrm{CF}_{3} \mathrm{COOH}(2.0 \mathrm{~mL})$ at room temperature, and the resulting reaction mixture was stirred for 2 h . After addition of saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dropwise to adjust the pH around $8 \sim 9$, the reaction mixture was extracted with DCM , dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column on silica gel to afford 17 (yield 80%).

Preparation of 18. A mixture of 2-(4-(3,4-dichlorophenyl) piperazin-1-yl) acetic acid ($72 \mathrm{mg}, 0.22 \mathrm{mmol}$), 1-hydroxybenzotriazole ($30 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride ($42 \mathrm{mg}, 0.22 \mathrm{mmol}$) in anhydrous DCM was stirred at room temperature for 2 h under argon. Then, a solution of $\mathbf{1 7}(36 \mathrm{mg}, 0.10 \mathrm{mmol})$ in DMF (2.0 mL) was added and further stirred at rt overnight. The reaction mixture was diluted with water, extracted with ethyl acetate. The combined organic layer was washed with water, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column on silica gel to afford 18 (80% yield).

5. Determination of cytotoxicity

The antiproliferative property in vitro evaluation of compound $\mathbf{1 8}$ against large cell lung carcinoma (NCI-H460) cell line was carried out by using a method of 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for 72 h using flat-bottomed 96 -well plate. The supplemented culture medium with cells $\left(1 \times 10^{4}\right.$ cells/well) was seeded to the wells for 12 h . Compound $\mathbf{1 8}$ dissolved in DMSO were diluted with medium to various concentrations $(1-100 \mu \mathrm{M})$, which contained no more than $1 \% \mathrm{DMSO}(\mathrm{v} / \mathrm{v})$ in the end. After 72 h incubation, the medium in each well was replaced by $100 \mu \mathrm{~L}$ of medium containing 10% MTT solution $(0.5 \mathrm{mg} / \mathrm{mL}$ in phosphate-buffered saline). After incubation for an additional 2 h , the medium/MTT mixture was removed, and the resulting purple formazan crystals were dissolved with $100 \mu \mathrm{~L}$ DMSO per well. Optical Densities (OD) at a wavelength of 570 nm were measured with a microplate reader (Infinite M200, Swiss, Tecan). The quantity of vital cells was expressed in terms of the T/C value in comparison to the untreated control.

6. Characterization of substrates and products

(E)-5-(2-Azidoethyl)-6-styrylbenzo[d][1,3]dioxole
(trans:cis = 1:0.9). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53$ (cis, d, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (trans, $\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.15$ (cis or trans, m, 4 H); 6.94 (trans, d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.77 (trans, s, 1H), 6.74 (cis, s, 1H), 6.68 (trans, s, 1H), 6.63 (cis, s, 1H), 6.63 (cis, d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.00 (cis, s, 2H), 5.95
(trans, s, 2H), 3.48 (cis, t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.42 (trans, t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.00 (cis, t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.86 (trans, $\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.48$ (cis), 147.20 (cis), 147.16, 146.56, 137.45 (cis), 136.45, 131.26, 130.38, 130.11 (cis), 129.70, 129.58 (cis), 129.49 (cis), 129.00, 128.80 (cis), 128.31, 128.22, 127.71 (cis), 127.38, 126.49 (cis), 125.10 (cis), 110.11(cis), 109.96, 109.60, 105.83 (cis), 101.23 (cis), 101.08, 52.18 (cis), 51.77, 33.09, 32.90 (cis). HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$266.1176, found 266.1180.

(E)-5-(2-Azidoethyl)-6-(but-1-en-1-yl)benzo[d][1,3]dioxole (B2) (trans:cis = 0.6:1). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96$ (trans, $\mathrm{s}, 1 \mathrm{H}$), 6.72 (cis, s, 1H), 6.70 (cis, s, 1H), 6.66 (trans, s, 1H), 6.52 (trans, dt, $J=15.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39$ (cis, dt, $J=11.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (trans, dt, $J=15.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (cis, s, 2H), 5.94 (trans, s, 2H), 5.72 (cis, dt, $J=11.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.42 (trans, t, $J=7.5 \mathrm{~Hz}$, 2H), 3.38 (cis, t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (trans, t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.83 (cis, t, $J=7.4 \mathrm{~Hz}$, 2H), 2.27 (trans, pd, $J=7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17 (cis, pd, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.13 (trans, $\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04($ cis, $\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.93$, 146.72, 146.57 (cis), 146.08 (cis), 135.40 (cis), 133.77, 130.79, 130.20 (cis), 129.46 (cis), 128.26, 126.34 (cis), 125.40, 109.84 (cis), 109.79, 109.71 (cis), 106.15, 101.00, 51.92, 51.70 (cis), 32.93 (cis), 32.71, 26.31, 21.75 (cis), 14.25 (cis), 13.84. HRMS (ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$218.1176, found 218.1171.

5-(2-Azidoethyl)-6-phenethylbenzo[d][1,3]dioxole (1a). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.95$ (s, 2H), $3.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.54,145.99,141.38,133.18,128.64,128.50,128.46,126.17,109.57$, $109.55,100.92,52.19,37.96,34.65,31.92$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}$ $\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$268.1332, found 268.1335.

5-(2-Azidoethyl)-6-butylbenzo[d][1,3]dioxole (1b). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.42,145.72$, 134.41, 128.28, 109.56, 109.51, 100.82, 52.32, 33.79, 32.35, 32.01, 22.65, 14.03. HRMS (ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$220.1332, found 220.1335 .

tert-Butyl 5-benzyl-7,8-dihydro-[1,3]dioxolo[4,5-g]isoquinoline-6(5H)-carboxylate (2a) (1:2 Diastereomers). ${ }^{131} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ major peaks. $7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=$ $8.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=13.2,5.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=16.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.38,146.32,145.88,138.51,130.04,129.64,128.36$, 127.88, 126.43, 108.66, 107.18, 100.88, 79.62, 56.76, 42.97, 36.94, 28.10. HRMS (ESI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 390.1676$, found 390.1672.

tert-Butyl 5-propyl-7,8-dihydro-[1,3]dioxolo[4,5-g]isoquinoline-6(5H)-carboxylate (2b) (3:2 Diastereomers). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.56(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.07-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.19-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.29-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.90(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.88,146.06,145.85,131.34,127.46,108.65,106.98$, 100.79, 79.76, 54.54, 39.39, 36.66, 28.49, 19.64, 14.06. HRMS (ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{Boc}+\mathrm{H}_{2}\right]^{+}\right)$220.1332, found 220.1328.
 $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.22,148.90,147.71,129.03,115.62,114.33$, $112.78,90.28,80.12,61.06,55.86,52.16,39.76,23.95$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$279.1227, found 279.1224.

Methyl 2-(2-(4-hydroxybutyl)-4,5-dimethoxyphenyl)acetate (E). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.65,147.97$, $146.89,133.38,123.79,113.72,112.62,62.04,55.81,55.76,51.95,37.83,32.30,27.27$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$283.1540, found 283.1537.
$\mathrm{MeO}_{2} \mathrm{Me}$ Methyl 2-(4,5-dimethoxy-2-(4-((tetrahydro-2H-pyran-2Мотнр yl)oxy)butyl)phenyl)acetate (F). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H})$, $3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.45(\mathrm{~m}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.37,148.06,147.02,133.38,123.88,113.62,112.64$, $98.89,67.34,62.33,55.94,55.87,51.97,37.93,32.49,30.75,29.61,27.92,25.47,19.66$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 389.1935$, found 389.1929.

2-(4,5-Dimethoxy-2-(4-((tetrahydro-2H-pyran-2$\left.\mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.83$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.44(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.45,147.03,133.23,127.84,113.21$,
112.87, 99.18, 67.38, 63.57, 62.64, 55.97, 55.93, 35.63, 32.22, 30.79, 29.58, 28.40, 25.44, 19.82. HRMS (ESI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 361.1985$, found 361.1982.

OTs NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ (s, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.84(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.35$ $(\mathrm{m}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.80$, 147.01, 144.67, 133.13, 132.94, 129.73, 127.76, 125.45, 112.90, 112.60, 98.96, 70.47, 67.27, 62.44, 55.86, 55.85, 32.09, 31.78, 30.77, 29.56, 28.27, 25.46, 21.58, 19.74. HRMS (ESI) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$515.2074, found 515.2070.

2-(4-(2-(2-Azidoethyl)-4,5-dimethoxyphenyl)butoxy)tetrahydro-2H-pyran (3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.76, 147.15, 132.95, 127.40, 112.83, 112.79, 98.90, 67.26, 62.34, 55.97, 55.87, $52.35,32.18,31.81,30.76,29.62,28.37,25.48,19.68$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 386.2050$, found 386.2044.

tert-Butyl 6,7-dimethoxy-1-(3-((tetrahydro-2H-pyran-2-yl)oxy)propyl)-3,4-dihydroisoquinoline-2(1 H)-carboxylate
(4) (2:3 Diastereomers). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61-$ $6.54(\mathrm{~m}, 2 \mathrm{H}), 5.15-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.26-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.70(\mathrm{~m}$, $2 \mathrm{H}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}$), 3.83 (s, 3H), $3.50-3.37$ (m, 2H), $3.30-3.04$ (m, 1H), $2.90-2.72$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.86,147.33,129.96,126.33,111.53,109.97,98.95,79.82,67.30,62.36$, 56.02, 55.89, 54.31, 38.24, 36.61, 33.81, 33.31, 30.77, 28.49, 26.66, 25.46, 19.68. HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 458.2513$, found 458.2509 .

3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-1-ol (5). ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $5.00-4.77$ (br, 2H), 3.94 (dd, $J=8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (s, 3 H 0 , $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.01$ $(\mathrm{m}, 1 \mathrm{H}), 2.77(\mathrm{dt}, J=16.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=16.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}$, $2 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.51,147.39,130.38$,
126.71, 111.69, 109.38, 62.83, 56.04, 55.84, 55.44, 39.73, 35.66, 30.65, 28.75. HRMS (ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 252.1594$, found 252.1592 .

Crispine A. ${ }^{31}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $3.83,(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.15$ (ddd, $J=11.1$, $6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.41, 147.30, 130.54, 126.06, 111.33, 108.89, 62.76, 56.00, 55.89, 53.09, 48.20, 30.61, 27.82, 22.25. HRMS (ESI) m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$234.1489, found 234.1486.

1,2-Dimethoxy-4-(1-vinylcyclohexyl)benzene (I). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dd, $J=17.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (dd, $J=10.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (dd, $J=17.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (s, 3H), $2.05-1.97$ (m, 2H), $1.89-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.59,147.59,146.96,139.68,118.86,112.25,110.82,110.66,55.86$, 55.78, 44.43, 36.07, 26.37, 22.58. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 247.1693, found 247.1689.

2-(1-(3,4-Dimethoxyphenyl)cyclohexyl)ethan-1-ol (J). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 3.86$ (s, 3H), 3.84 (s, 3H), 3.37 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.03 (dd, $J=12.4,6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.78,146.87,139.03,118.88,110.98,110.18,59.37,55.94$, $55.79,39.80,36.71,26.45,22.23$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}\left([\mathrm{M}-\mathrm{OH}]^{+}\right)$ 247.1693, found 247.1688.

2-(1-(3,4-Dimethoxyphenyl)cyclohexyl)ethyl
4methylbenzenesulfonate (K). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (s, 3H), 1.98 (dd, $J=12.4,5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.80,147.01,144.59,137.64,133.02,129.71,127.74,118.84$, $110.89,109.86,67.98,55.84,55.76,39.88,36.47,26.21,22.12,21.60$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$441.1706, found 441.1698.

4-(1-(2-Azidoethyl)cyclohexyl)-1,2-dimethoxybenzene (6). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84$ (s, 3H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), $2.94-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, J=13.0,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.85$, 147.02, 137.96, 118.96, 110.96, 110.02, 55.94, 55.77, 47.41, 41.99, 39.99, 36.47, 26.37, 22.22. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$262.1802, found 262.1796.

tert-Butyl 3a-(3,4-dimethoxyphenyl)octahydro-1H-indole-1carboxylate (7) (1:1 Diastereomers). ${ }^{5}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{~m}, 3 \mathrm{H}), 4.29-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.41-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.14-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 4.5 \mathrm{H}), 1.41(\mathrm{~s}$, $4.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.33,148.60,147.01,140.54,117.81,110.92$, 109.26, 78.99, 59.56, 55.83, 46.97, 43.56, 35.48, 32.22, 29.16, 28.67, 23.39, 22.43. HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 384.2145$, found 384.2152 .

3-Ethyl-2,3,4,9-tetrahydro-1H-carbazole-3-carbaldehyde (L). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56$ (s, 1H), 7.77 ($\mathrm{s}, 1 \mathrm{H}$), 7.55 (d, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13$ (m, 2H), 3.16 (d, $J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (ddd, $J=13.6,9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.67$ (m, 2H), $0.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.84,136.22$, 133.47, 127.51, 121.43, 119.29, 117.74, 110.59, 107.77, 49.63, 28.61, 27.48, 26.59, 19.98, 8.47. HRMS (ESI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$228.1383, found 228.1384.

(E)-3-(3-ethyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)acrylonitrile (M). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ ($\mathrm{s}, 1 \mathrm{H}$), $7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, $J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dt}, J=11.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.63 (d, J = $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.34,136.21,132.85,127.29,121.49,119.35$, 117.88, 117.58, 110.66, 107.57, 99.33, 41.62, 33.11, 32.55, 28.72, 20.41, 8.38. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$251.1543, found 251.1543.

3-(3-Ethyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)propanenitrile (N)..$^{7}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.58$ (m, 2H), $2.51-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.37$ $(\mathrm{m}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $136.25,132.60,127.90,121.25,120.63,119.19,117.61,110.65,108.02,35.23,31.51$ (d, $J=15.3 \mathrm{~Hz}$), 31.06, 28.32, 19.87, 11.89, 7.80. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 253,1699$, found 253.1700.

3-(3-Ethyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)propanal (O). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (d, J=7.4 Hz, 1H), $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{td}$, $J=6.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.43$ (m, 2H), $1.81-1.66$ (m, $4 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $202.99,136.18,132.78,128.05,121.11,119.11,117.60,110.47,108.63,38.72,34.81$, $31.81,31.32,28.65,27.75,20.01,7.80$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 256.1696 , found 256.1696 .

3-(3-Ethyl-2,3,4,9-tetrahydro-1 \mathbf{H}-carbazol-3-yl)propan-1-ol (\mathbf{P}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 2 \mathrm{H}), 1.76$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.93$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.14,133.07,128.20,120.96$, 119.02, 117.62, 110.42, 109.04, 63.87, 34.94, 31.99, 31.67, 36.63, 28.95, 26.83, 20.09, 7.87. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$258.1852, found 258.1854.

3-(3-Ethyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)propyl
4methylbenzenesulfonate (Q). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ (d , $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (td, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.74,136.16,133.05,132.91,129.85$, 128.11, 127.88, 121.01, 119.03, 117.57, 110.49, 108.72, 71.51, 34.89, 31.79, 31.48, $31.25,28.89,23.28,21.64,19.97,7.79$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 412.1941$, found 412.1942 .

3-(3-Azidopropyl)-3-ethyl-2,3,4,9-tetrahydro-1H-carbazole (8). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.62$ $(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.19,132.99,128.20,121.06,119.11,117.68,110.51,108.90,52.35$, 35.13, 32.90, 31.99, 31.64, 28.90, 23.19, 20.07, 7.90. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$283.1917, found 283.1918.

Di-tert-butyl-4a-ethyl-3,4,4a,5,6,11c-hexahydro-1H-pyrido[3,2-

 c]carbazole-1,7(2H)-dicarboxylate (9). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.05(\mathrm{~m}$,$1 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 1.54$ (s, 9 H$), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.49,150.52,146.75,136.30,136.11,128.38,123.45,122.92$, 118.72, 115.31, 115.17, 85.21, 83.67, 79.82, 54.40, 38.66, 34.92, 31.59, 28.64, 28.33, 25.93, 27.43, 22.47, 20.57, 7.76. HRMS (ESI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 455.2904, found 455.2914.

4a-Ethyl-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole (10). ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.6,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=12.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=$ $17.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (ddd, $J=17.1,11.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=14.2,11.7,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 136.71,136.62,125.82$, 121.32, 119.18, 116.83, 110.65, 103.53, 55.56, 43.82, 34.61, 32.11, 28.60, 22.95, 19.02, 17.98, 6.32. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$255.1856, found 255.1854 .

2-Azido- N-(2-benzylphenyl)acetamide (11). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H})$, $7.20-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.62,138.57,134.93,131.42,131.14$, $128.88,128.45,127.75,126.93,125.70,123.40,53.06,38.57$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$267.1240, found 267.1235.

tert-Butyl
2-oxo-5-phenyl-1,2,3,5-tetrahydro-4Hbenzo $[\mathrm{e}][1,4]$ diazepine-4-carboxylate (12). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.28-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, 3.99 ($\mathrm{s}, 2 \mathrm{H}$), $1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.22,139.09,136.27,130.92$, $130.58,128.83,128.70,128.56,128.54,127.47,126.58,126.41,124.17,80.34,38.07$, 38.02, 28.29. HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$339.1703, found 339.1705 .

Methyl (S)-2-azido-3-(4-(3-methylbut-2-en-1-yl)-1H-indol-3yl)propanoate (\mathbf{R}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.75$ (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.54(\mathrm{dd}, J=15.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=15.1,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.81,136.89,134.35,132.56$, 124.81, 123.60, 123.53, 122.40, 120.33, 110.62, 109.47, 63.18, 52.58, 32.27, 29.28, 25.65, 18.03. HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right) 285.1598$, found 285.1599.

tert-Butyl
(S)-3-(2-azido-3-methoxy-3-oxopropyl)-4-(3-methylbut-2-en-1-yl)-1H-indole-1-carboxylate (13). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.25-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.46$ (dd, $J=15.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=15.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.55,149.45,136.28,134.60,132.92,127.67,124.75$, $124.65,123.69,123.39,115.37,113.45,83.75,62.34,52.74,32.12,29.14,28.22,25.67$, 18.10. HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}\right)$385.2122, found 385.2124

2,6-Di-tert-butyl 3-methyl 1-(2-methylprop-1-en-1-yl)-3,4-dihydro- $1 H$-azepino $[5,4,3-c d]$ indole-2,3,6-tricarboxylate (14) (1:1 Diastereomers). ${ }^{10}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H})$, $6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.05(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 0.5 \mathrm{H}$), 5.40 (dd, $J=17.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, $J=12.3,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.77 (dd, $J=13.0,5.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.76 (s, 1.H), 3.74 (s, 1.5 H), $3.61-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.38$ (dd, $J=$ $15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 4.5 \mathrm{H}), 1.34(\mathrm{~s}, 4.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.13$, $154.81,139.69,139.18,137.62,124.50,124.14,123.27,120.99,120.36,117.03$, 114.11, 80.53, 60.24, 57.59, 51.98, 28.22, 27.21, 25.65, 18.97. HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\left[\mathrm{M}-\mathrm{Boc}+\mathrm{H}_{2}\right]^{+}\right) 385.2122$, found 385. 2120.

2-(Benzyloxy)-4-ethyl-1-methoxybenzene. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}$, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.93$, 146.59, 137.79, 137.66, 128.60, $127.85,127.51,119.78,114.63,112.20,71.28,55.89,28.71,16.05$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$243.1380, found 243.1381.

1-(Benzyloxy)-4-bromo-5-ethyl-2-methoxybenzene. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (s, 1H), 6.77 (s, 1H), 5.10 (s, 2H), 3.88 (s, 3H), $2.69(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.16,146.88,136.69,136.03,128.60,128.02,127.45,118.19,113.64$, $112.88,71.40,56.20,29.13,14.59$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 343.0304$, found 343.0308 .

2-(4-(Benzyloxy)-2-ethyl-5-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S1). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.34(\mathrm{~s}, 12 \mathrm{H}), 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.87,146.50$, 145.51, 137.50, 127.77, 127.72, 121.31, 112.33, 83.17, 71.28, 55.76, 28.51, 24.84, 17.46. HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 369.2233$, found 369.2234 .

2-(2-Ethyl-4,5-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (S2). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (s, 1H), $3.90(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}), 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.07,145.94,118.23,111.83,83.19,55.97,55.66$, 28.49, 24.86, 17.52. HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BO}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 315.1738$, found 315.1745 .

Methyl 4'-(benzyloxy)-2'-ethyl-4,5,5',6-tetramethoxy-[1,1'-biphenyl]-2-carboxylate (T1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.6$
$\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.34-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.58,152.12,151.69,148.77,145.38,144.88,137.48,135.42,129.94,128.41$, 127.66, 127.57, 127.27, 126.30, 115.79, 111.20, 108.78, 70.87, 60.96, 60.78, 56.09, $55.85,51.89,26.07,14.73$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 467.2064$, found 467.2070.

Methyl 2'-ethyl-4,4',5,5',6-pentamethoxy-[1,1'-biphenyl]-2carboxylate (T2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.79$ $(\mathrm{s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, 3 H), 3.57 ($\mathrm{s}, 3 \mathrm{H}$), 3.56 ($\mathrm{s}, 3 \mathrm{H}), 2.37-2.27$ (m, 2H), 1.05 (t, $J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.74,152.21,151.73$, 148.01, 146.10, 145.36, 134.72, 129.92, 127.59, 126.50, 112.85, $110.61,108.72,61.00,60.94,56.12,56.00,55.68,51.97,26.03,14.82$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$391.1751, found 391.1759.

(4'-(Benzyloxy)-2'-ethyl-4,5,5',6-tetramethoxy-[1,1'-biphenyl]-2yl)methanol (U1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$, $5.14(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (s, 3H), $2.26(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.75,151.37,149.10,145.09$, 141.28, 137.25, 135.95, 134.82, 128.48, 127.67, 127.17, 126.55, 126.37, 116.42,
$111.79,106.52,70.77,62.95,60.91,60.85,55.94,25.94,14.88$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 461.1935$, found 461.1935.

(2'-Ethyl-4,4',5,5',6-pentamethoxy-[1,1'-biphenyl]-2-yl)methanol (U2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.60$ ($\mathrm{s}, 1 \mathrm{H}$), $4.32(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.84,151.43,148.32,146.54,141.28,135.17$, 134.87, 126.57, 126.42, 113.18, 111.16, 106.38, 63.06, 60.97, 60.93, 56..00, 55.99, 25.88, 14.99. HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 385.1622$, found 385.1630 .

6'-(Bromomethyl)-2-ethyl-2',3',4',5-tetramethoxy-[1,1'-biphenyl]-4-ol (V1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.83,151.44,146.18,142.92,142.30,134.95,131.46,128.26$, 126.86, 116.17, 110.36, 108.92, 60.99, 60.94, 56.01, 55.83, 32.39, 25.97, 14.90. HRMS (ESI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 433.0621$, found 433.0626 .

6-(Bromomethyl)-2'-ethyl-2,3,4,4',5'-pentamethoxy-1,1'-biphenyl (V2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.94,151.46,148.41,146.29,142.38,135.37,131.56,128.40$, 126.06, 113.37, 111.03, 108.89, 60.96, 56.03, 55.97, 55.79, 32.67, 25.99, 14.96. HRMS (ESI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO} 5 \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 447.0778$, found 447.0787.

6'-(Azidomethyl)-2-ethyl-2',3',4',5-tetramethoxy-[1,1'-biphenyl]-4-ol (15a). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.86$ ($\mathrm{s}, 1 \mathrm{H}$), 6.81 (s, $1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.84,151.67,146.17,143.14,141.90,134.80,129.72$, $127.61,127.08,116.23,110.50,107.35,61.05,60.95,56.08,55.87,52.58,25.95,14.96$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 396.1530$, found 396.1533 .

6-(Azidomethyl)-2'-ethyl-2,3,4,4',5'-pentamethoxy-1,1'-biphenyl (15b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.57$ $(\mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.90,151.63,148.44,146.55,141.95$, $135.21,129.71,127.86,126.26,113.43,111.13,107.55,60.92,60.86$, $56.00,55.92,55.75,52.50,25.90,14.92$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$410.1686, found 410.1685.

tert-Butyl 9-(benzyloxy)-1,2,3,10-tetramethoxy-7-methyl-5,7-dihydro- 6 H -dibenzo[c,e]azepine-6-carboxylate (16a) (1:1
Diastereomers). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.97$ (s, 0.5 H), $6.87(\mathrm{~s}, 0.5 \mathrm{H}), 6.77(\mathrm{~s}, 0.5 \mathrm{H}), 6.64(\mathrm{~s}, 0.5 \mathrm{H}), 5.21-5.13$ (m, 0.5H), $4.99-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.95-$ $3.98(\mathrm{~m}, 9 \mathrm{H}), 3.96-3.53(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 0.95$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.71,152.99,151.50,150.48$, $150.21,142.33,139.07,137.54,131.54,127.33,125.74,125.42,113.90,108.37,83.42$, $79.91,61.25,60.49,57.79,56.96,56.13,56.04,46.57,27.64,20.99$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}{ }_{9} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 568.2517$, found 568.2521.

tert-Butyl 1,2,3,9,10-pentamethoxy-7-methyl-5,7-dihydro$6 \boldsymbol{H}$-dibenzo $[c, e]$ azepine-6-carboxylate (16b) (1:1
Diastereomers). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~s}, 0.5 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 0.5 \mathrm{H}), 5.13-5.05(\mathrm{~m}$, $0.5 \mathrm{H}), 4.95-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 0.5 \mathrm{H}), 4.00-3.87$ (m, 12H), $3.66-3.46(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.78,152.84,150.37$, 148.01, 147.87, 147.69, 142.30, 131.75, 127.29, 126.25, 114.45, 112.91, 108.48, 79.79, $61.30,60.52,57.56,56.14,56.03,55.95,46.63,28.65,21.27$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 482.2149$, found 482.2148 .

1,2,3,9,10-Pentamethoxy-7-methyl-6,7-dihydro-5Hdibenzo[$\boldsymbol{c}, \boldsymbol{e}]$ azepine (17). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03$ (s, $1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.77$ (s, 3H), $3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{q}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.64,150.39,148.17,147.31$, 141.67, 132.98, 131.57, 128.99, 125.81, 112.69, 107.54, 107.46, $61.00,60.65,55.86,55.73,49.44,49.42,18.56$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 360.1805$, found 360.1802 .

2-(4-(3,4-Dichlorophenyl)piperazin-1-yl)-1-(1,2,3,9,10-pentamethoxy-7-methyl-5,7-dihydro-6H-dibenzo[c,e]azepin-6-yl)ethan-1-one
(18) (1:4 Diastereomers). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ major peaks. $7.31-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (s, 3H), 3.93 (s, 3H), 3.92 (s, 3H), 3.90 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 $(\mathrm{s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77-2.75(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.22,152.82,150.65,150.49,148.15,147.89,142.90,132.90,131.11,130.55$, $130.28,127.06,126.97,122.55,117.23,115.33,114.18,113.17,108.54,62.42,61.36$, $60.55,56.30,56.09,55.99,55.90,52.97,48.81,48.41,20.06$. HRMS (ESI) m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 630.2132$, found 630.2130 .

7. Copies of NMR Spectra

oity

soc*

Oтоте

NOTs

ОтНР

㘶高

 NトN

N

(

CoO
$\stackrel{\infty}{\infty}$

べす

OTs

(
(

-

ล̀
ì
i
1

ill

路

$\underbrace{\text { - M - }}$

\bar{n}
\vdots
i

$\begin{array}{llllllllllll}1210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}_{1}^{1}(\mathrm{ppm})\end{array}$

in

[^0]

$\underset{\sim}{\substack{0 \\ \infty \\ \infty \\ \infty \\ \infty}} \stackrel{\infty}{\infty}$

r

-170.81

[^1]
CnO

$\stackrel{\infty}{\stackrel{\infty}{4}} \begin{gathered}\infty \\ \underset{i}{\infty} \\ i\end{gathered}$
$\stackrel{n}{\underset{\infty}{\infty}} \stackrel{n}{i}$

Br

\qquad

$\stackrel{\sim}{\sim}$

Bpin

$\stackrel{\underset{1}{\infty}}{\stackrel{\infty}{\infty}} \stackrel{\infty}{\infty}$
$\stackrel{\substack{\infty \\ \underset{1}{\perp}}}{\stackrel{n}{1}}$
$\stackrel{\sim}{\grave{\infty}}$
$\underset{\sim}{\infty} \stackrel{\infty}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim}=$

[^2]

-

[^3]

in ir

	\circ
$\stackrel{\circ}{n}$	
1	1

8	8
	\vdots
	1

[^4]

8. References

1. Dhanasekaran, S.; Bisai, V.; Unhale, R. A.; Suneja, A.; Singh, V. K., A General Catalytic Route to Isoindolinones and Tetrahydroisoquinolines: Application in the Synthesis of (\pm)-Crispine A. Org. Lett. 2014, 16 (23), 6068-6071.
2. Ohba, K.; Koga, Y.; Nomura, S.; Nakata, M., Functionalized aryl- β-C-glycoside synthesis by Barbier-type reaction using 2,4,6-triisopropylphenyllithium. Tetrahedron Lett. 2015, 56 (8), 1007-1010.
3. Wu, T. R.; Chong, J. M., Asymmetric Allylboration of Cyclic Imines and Applications to Alkaloid Synthesis. J. Am. Chem. Soc. 2006, 128 (30), 9646-9647.
4. Flores-Gaspar, A.; Martin, R., Mechanistic Switch via Subtle Ligand Modulation: Palladium-Catalyzed Synthesis of α, β-Substituted Styrenes via C $\square \mathrm{H}$ Bond Functionalization. Adv. Syn. Catal. 2011, 353 (8), 1223-1228.
5. Verma, P.; Chandra, A.; Pandey, G., Diversity-Oriented Approach Toward the Syntheses of Amaryllidaceae Alkaloids via a Common Chiral Synthon. J. Org. Chem. 2018, 83 (17), 9968-9977.
6. Berges, J.; Garcia, B.; Muniz, K., An Electrophilic Bromine Redox Catalysis for the Synthesis of Indole Alkaloid Building Blocks by Selective Aliphatic C-H Amination. Angew. Chem., Int. Ed. 2018, 57 (48), 15891-15895.
7. Frahm, M.; Voss, A.; Brasholz, M., A short total synthesis of (\pm)-mersicarpine via visible light-induced cascade photooxygenation. Chem. Commun. 2022, 58 (36), 5467-5469.
8. Majdecki, M.; Niedbala, P.; Jurczak, J., Amide-Based Cinchona Alkaloids as Phase-Transfer Catalysts: Synthesis and Potential Application. Org. Lett. 2019, 21 (19), 8085-8090.
9. Bartoccini, F.; Venturi, S.; Retini, M.; Mari, M.; Piersanti, G., Total Synthesis of (-)-Clavicipitic Acid via gamma,gamma-Dimethylallyltryptophan (DMAT) and Chemoselective C-H Hydroxylation. J. Org. Chem. 2019, 84 (12), 8027-8034.
10. Sheng, T.; Ma, C.; Zhang, G.; Pan, X.; Liu, Z., Asymmetric Total Synthesis of Griseofamine B and Its Three Stereoisomers. J. Nat. Prod. 2022, 85 (4), 1128-1133.
11. Hua, X.-G.; Mague, J. T.; Li, C.-J., Model studies of (+)-bergenin: A convenient formation of aryl δ-lactones. Tetrahedron Lett. 1998, 39 (38), 6837-6840.
12. Sun, W.-X.; Ji, Y.-J.; Wan, Y.; Han, H.-W.; Lin, H.-Y.; Lu, G.-H.; Qi, J.-L.; Wang, X.-M.; Yang, Y.-H., Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg. Med. Chem. Lett. 2017, 27 (17), 4066-4074.
13. Talk, R. A.; Duperray, A.; Li, X.; Coldham, I., Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench. Org. Biomol. Chem. 2016, 14 (21), 4908-4917.

[^0]: | 110 | 1 | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |

[^1]:

[^2]:

[^3]:

[^4]:

