Supplementary Information

Electrochemical Dehydrogenative Cyclization/Aromatization of

Aniline-Tethered Alkylidenecyclopropanes: Facile Access to

Benzo[c]carbazole Frameworks

Zhi-Jia Huang,^a Jin-Hao Qin,^a Miao-Lian Huang,^a Xia-Lu Cheng,^a Hai-Yang Xie,^a Yang Li,^{*a} and Jin-Heng Li^{*abcd}

^a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

^{b.} State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

^{c.} State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

^d School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China E-mail: <u>liyang1989@hnu.edu.cn</u> and jhli@hnu.edu.cn

List of Contents

(A) Typical Experimental Procedure	S1
(B) Analytical data	
(C) Spectra (NMR Spectra)	
(D) Reference	

(A) Typical Experimental Procedure

(a) General

The ¹H and ¹³C NMR spectra were recorded in CDCl₃ solvent on an NMR spectrometer using TMS as internal standard. HRMS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points are uncorrected. The instrument for electrolysis is DC power source (PM3005B) (made in China). Cyclic voltammograms were obtained on a CHI 605E potentiostat. The anode electrode is graphite rod (Φ 6 mm×80 mm) and cathode electrode is platinum electrodes ($1.0 \times 1.0 \text{ cm}^2$).

(b) General procedures for electrochemical dehydrogenative cyclization /aromatization of aniline-tethered Alkylidenecyclopropanes

To an undivided three-necked bottle (10 mL) were added $1a^{[1]}$ ^[2]. (0.2 mmol), Na₂CO₃(2.0 equiv), "Bu₄NPF₆ (2.0 equiv), Cp₂Fe (10 mol%), THF (4.5 mL) and MeOH (3 mL). The bottle was equipped with platinum electrodes (1.0×1.0 cm²) as cathode and graphite rod electrode as anode under air or argon. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at 80 °C for 3.5 h until complete consumption of **1a** as monitored by TLC. After the reaction was finished, the solution was extracted with EtOAc (3×10 mL). The combined organic layer was dried with Na₂SO₄, filtered

and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired products **2a**.

(c) Screening of optimal reaction conditions

Entry	Variation from the Standard Conditions	Yield [%] ^[j]
1	none	83
2	no catalyst	trace
3	no base	8
4	no electric current	0
5	3 mA	45 ^c
6	7 mA	70^d
7	ⁿ Bu ₄ NBF ₄ instead of ⁿ Bu ₄ NPF ₆	62
8	ⁿ Bu ₄ NBr instead of ⁿ Bu4NPF ₆	66
9	LiClO ₄ instead of ⁿ Bu ₄ NPF ₆	70
10	NaHCO ₃ instead Na ₂ CO ₃	41
11	K ₂ CO ₃ instead Na ₂ CO ₃	50
12	Na ₂ HPO ₄ instead Na ₂ CO ₃	58
13	RVC as anode	40
14	Ni plate as cathode	trace
15	Zn plate as cathode	trace
16	MeCN as solvent	0
17	DMF as solvent	0
18	THF: MeOH = 4:1	67
19	THF: MeOH = 2:1	55
20	THF as solvent	0
21	MeOH as solvent	40
22	under air atmosphere	82

[a] Standard reaction conditions: graphite rod (Φ 6 mm) anode, platinum plate (1.0×1.0 cm²) cathode, constant current (I = 5 mA), **1a** (0.2 mmol), Cp₂Fe (10 mol%), "Bu₄NPF₆ (0.4 mmol), Na₂CO₃ (0.4 mmol), THF (4.5 mL), MeOH (3 mL), 80 °C, and 3.5 h. [b] Yield of isolated product. [c] Reaction time = 5 h. [d] Reaction time = 2.5 h.

(d) Gram-scale synthesis of 7-(methylsulfonyl)-7H-benzo[c]carbazole (2a):

In an oven-dried undivided three-necked bottle (50 mL) equipped with a stir bar, alkene 1a (1.0 g, 3.3 mmol), "Bu₄NPF₆ (387 mg 1 mmol,), Cp₂Fe (40 mg), Na₂CO₃(70 mg). MeOH (9.0 mL) and THF (13.5 mL) were combined and added. Then the bottle was equipped with graphite electrode as anode and platinum plate as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA for 18 h. When the reaction was finished, the reaction mixture was washed with water and extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography (petroleum/ethyl acetate = 20:1) on silica gel to afford the desired product 2a (0.72 g, 72% yield).

(e) Experimental device

(g) Cyclic Voltammetry (CV) Experiment

Figure S1. Cyclic voltammogram curves(0-1V). Using GC disk as working electrode, Pt slice, and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate. a) 1a (14mM). b) 1a (14mM) + NaOMe (14 mM). c) Cp_2Fe (3 mM). d) Cp_2Fe (3 mM) + 1a (14 mM). e) Cp_2Fe (3 mM) + 1a (14 mM) + Na₂CO₃. (28 mM) f): Cp_2Fe (3 mM) + 1a (14 mM) + NaOMe (14 mM)

The oxidation potential of reagent 1 was very high ($E_{p/2}>1.5V$) but decreased to 0.54 V in the presence of the base NaOMe (curve b). The oxidation potential of ferrocene was 0.53 V in the mixed solvent of THF/MeOH (3:2).

(B) Analytical data

7-(methylsulfonyl)-7H-benzo[c]carbazole (2a):

97.9 mg, 83% yield; white solid; ¹H NMR (500 MHz, CDCl₃). δ 8.76 (d, *J* = 8.5 Hz, 1H), 8.55 (d, *J* = 6.5 Hz, 1H), 8.40 (d, *J* = 9.0 Hz, 1H), 8.32 (t, *J* = 4.0 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.93 (d,

J = 9.0 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.55 (m, 3H), 2.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 136.4, 131.0, 129.2, 128.8, 128.8, 127.5, 126.9, 126.4, 125.0, 124.5, 123.5, 122.3, 119.6, 114.9, 114.3, 39.3. HRMS *m/z* (ESI) Calcd. for C₁₇H₁₇N₂O₂S requires [M+H]⁺: 296.0740, found:296.0750.

7-(ethylsulfonyl)-7H-benzo[c]carbazole (2b):

98.8 mg, 80% yield; white solid; ¹H NMR (500 MHz, CDCl₃). δ 8.79 (d, J = 8.5 Hz, 1H), 8.57 (d, J = 6.5 Hz, 1H), 8.42 (d, J = 10.0Hz, 1H), 8.34 (d, J = 7.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.94 (d,

J = 9.0 Hz, 1H), 7.73 (t, *J* = 8.5 Hz, 1H), 7.59 – 7.52 (m, 3H), 3.30 (q, *J* = 8.0 Hz, 2H), 1.12 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 137.0, 130.9, 129.2, 128.8, 128.7, 127.5, 126.5, 126.2, 124.9, 124.2, 123.5, 122.3, 119.0, 114.7, 114.3, 48.1, 7.8. HRMS *m/z* (ESI) calcd for C₁₈H₁₆NO₂S [M+H]⁺ 310.0896, found:310.0883.

7-(butylsulfonyl)-7H-benzo[c]carbazole (2c):

102.4mg, 76% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.78 (d, *J* = 8.5 Hz, 1H), 8.55 (d, *J* = 5.5 Hz, 1H), 8.41 (d, *J* = 9.0 Hz, 1H), 8.32(s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.54 (m, 3H), 3.21 (t, *J* = 7.5 Hz, 2H), 1.58 (t, *J* = 8.0 Hz, 2H), 1.24 (t, *J* = 8.0 Hz, 2H), 0.72 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 136.8, 130.9, 129.2 128.8, 128.7, 127.4, 126.5, 126.2, 124.9, 124.2, 123.6, 122.3, 119.1, 114.7, 114.3, 53.0, 24.7, 21.2, 13.2.; HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 338.1209, found:228.1202.

7-(cyclopropylsulfonyl)-7H-benzo[c]carbazole (2d):

115.6 mg, 90% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, *J* = 8.5 Hz, 1H), 8.53 (d, *J* = 7.0 Hz, 1H), 8.39 (d, *J* = 9.0 Hz, 1H), 8.34 (d, *J* = 7.0 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H),

7.89 (d, J = 9.0 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 7.56 – 7.50 (m, 3H), 2.61 – 2.51 (q, J = 3.5Hz, 1H), 1.31 (d, J = 5.0 Hz, 2H), 0.80 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 136.8, 130.9, 129.1, 128.8, 128.6, 127.4, 126.8, 126.1, 124.8, 124.1, 123.5, 122.2, 119.4, 115.0, 114.5, 30.6, 5.3.; HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 322.0896, found: 322.0890.

7-(benzylsulfonyl)-7H-benzo[c]carbazole (2e):

106.1 mg, 71% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, *J* = 8.5 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.16 – 8.11 (m, 2H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.72 (t, *J* =

8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H),
7.04 (t, J = 8.0 Hz, 1H), 6.93 (t, J = 8.0 Hz, 2H), 6.80 (d, J = 7.5 Hz, 2H), 4.47 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 138.6, 137.2, 130.8, 130.5, 129.1, 129.1, 128.7, 128.4, 128.4, 127.3, 126.3, 126.2, 126.0, 124.8, 124.0, 123.5, 122.0, 118.7, 114.6, 114.1,
59.2. HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 372.1053, found: 372.1060.

7-tosyl-7H-benzo[c]carbazole (2f):

106.5 mg, 72% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, *J* = 8.5 Hz, 1H), 8.59 (d, *J* = 9.0 Hz, 1H), 8.51 (d, *J* = 8.5 Hz, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 3H),

7.54 - 7.47 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 138.1, 136.6, 135.0, 131.0, 129.6, 129.1, 128.8, 128.6, 127.3, 127.1, 126.4, 126.1, 124.8, 124.3, 123.5, 122.1, 119.8, 115.4, 114.9, 77.3, 77.0, 76.8 21.4.
HRMS m/z (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 372.1053, found: 372.1053.

7-((4-methoxyphenyl)sulfonyl)-7H-benzo[c]carbazole (2g):

103.7 mg, 67% yield; white solid; ¹H NMR (500 MHz, CDCl₃); δ 8.70 (d, *J* = 8.5 Hz, 1H), 8.60 (d, *J* = 9.5 Hz, 1H), 8.51 (d, *J* = 8.5Hz, 1H), 8.46 (d, *J* = 8.0 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.94 (d, *J* = 9.5 Hz, 1H), 7.72 (d, *J* = 8.5 Hz,

2H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.5 Hz, 2H), 3.65 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.7, 138.2, 136.6, 131.0, 129.5, 129.09, 128.8, 128.6, 128.5, 127.3, 127.1, 126.1, 124.8, 124.2, 123.5, 122.1, 119.8, 115.4, 115.0, 114.2, 55.4. HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₃S [M+H]⁺ 388.1002, found: 388.1011.

7-((4-chlorophenyl)sulfonyl)-7H-benzo[c]carbazole (2h):

8.5 Hz, 2H).; ¹³C NMR (125 MHz, CDCl₃) 140.5, 138.0 136.3, 136.0, 131.1, 129.4, 129.1, 128.8, 128.7, 127.7, 127.5, 127.3, 126.4, 125.1, 124.7, 123.5, 122.3, 120.2, 115.4, 114.8. HRMS *m/z* (ESI) calcd for C₂₂H₁₄ClNO₂S [M+H]⁺ 392.0507, found: 392.0508.

7-(m-tolylsulfonyl)-7H-benzo[c]carbazole (2i):

2H), 2.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 139.4, 138.1, 137.9, 136.5, 134.7, 131.0, 129.1, 128.9, 128.8, 128.6, 127.3, 127.0, 126.7, 126.2, 124.9, 124.3, 123.5, 123.5, 122.1, 119.8, 115.3, 114.9, 21.3. HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 372.1053, found: 372.1053.

7-(o-tolylsulfonyl)-7H-benzo[c]carbazole (2j)

7.55 – 7.44 (m, 3H), 7.33 (d, J = 7.0 Hz, 1H), 7.16 (m, 2H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 138.1, 138.0, 136.9, 133.5, 132.9, 130.7, 129.1, 128.8, 128.7, 128.4, 127.3, 126.2, 126.1, 126.0, 124.8, 123.9, 123.5, 122.2, 118.7, 115.0, 114.6, 20.4. HRMS m/z (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 372.1053, found: 372.1055.

4-((7H-benzo[c]carbazol-7-yl)sulfonyl)morpholine (2k):

J = 8.0 Hz, 1H), 7.51 (d, J = 7.0 Hz, 2H), 3.47 (d, J = 5.7 Hz, 4H), 3.12 (d, J = 5.6 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 138.5, 136.9, 130.7, 129.1, 128.8, 128.4, 127.5, 126.2 126.0, 124.8, 123.9, 123.5, 122.2, 118.7, 115.3, 114.9, 65.8, 47.0. HRMS m/z (ESI) calcd for C₂₀H₁₈N₂O₃S [M+H]⁺ 367.1111, found: 367.1109.

7-(thiophen-2-ylsulfonyl)-7H-benzo[c]carbazole (2l):

69.7 mg, 48% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, J = 8.5 Hz, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.48 (t, J = 7.0 Hz, 2H), 8.01 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.69 (s, 1H), 7.57 - 7.51 (m, 4H), 7.34 (d, J = 5.0 Hz, 1H), 6.82 (d, J= 5.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 137.4, 136.4, 133.0, 132.5, 131.2,

129.2, 128.7, 128.7, 127.5, 127.35, 127.2, 126.3, 125.0, 124.7, 123.6, 122.2, 120.3, 115.7, 115.1. HRMS m/z (ESI) calcd for C₂₀H₁₈N₂O₃S [M+H]⁺ 364.0460, found: 364.0467.

3-methyl-7-(methylsulfonyl)-7H-benzo[c]carbazole (2m):

2.97 (s, 3H), 2.56 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 136.0, 134.6, 131.3, 129.6, 128.3, 128.3, 127.0, 126.8, 126.3, 124.4, 123.3, 122.3, 119.6, 114.9, 114.26, 39.2, 21.5. HRMS *m/z* (ESI) calcd for C₁₈H₁₆NO₂S [M+H]⁺ 310.0896, found: 310.0903.

3-methoxy-7-(methylsulfonyl)-7H-benzo[*c*]carbazole (2n):

= 9.0 Hz, 1H), 7.53 (s, 2H), 7.39 (d, J = 9.5 Hz, 1H), 7.34 (s, 1H), 3.97 (s, 3H), 2.98 (s, 2H), 2.98 (s, 2H)

3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 138.1, 135.2, 132.5, 127.7, 126.9, 126.4, 124.9, 124.5, 123.8, 122.2, 120.0, 119.6, 115.0, 114.8, 107.7, 55.4, 39.0. HRMS *m/z* (ESI) calcd for C₁₈H₁₆NO₃S [M+H]⁺ 326.0845, found: 326.0846.

7-(methylsulfonyl)-3-phenyl-7H-benzo[c]carbazole (2o):

Ph
$$0.5 \text{ mg}, 65\%$$
 yield; white solid; ¹H NMR (500 MHz, CDCl₃)
 $\delta 8.77 \text{ (d, } J = 8.5 \text{ Hz}, 1\text{H}), 8.53 \text{ (d, } J = 6.5 \text{ Hz}, 1\text{H}), 8.39 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H}), 8.31 \text{ (s, 1H)}, 8.17 \text{ (s, 1H)}, 7.95 \text{ (d, } J = 9.0 \text{ Hz}, 1\text{H})$

2H), 7.74 (d, J = 7.5 Hz, 2H), 7.53 – 7.49 (m, 4H), 7.40 (d, J = 7.5 Hz, 1H), 2.98 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 140.6, 138.1, 137.6, 136.4, 131.4, 129.1, 128.9, 127.8, 127.5, 127.3, 126.9, 126.8, 126.4, 124.5, 124.0, 122.3, 119.5, 114.9, 114.6, 39.3.
HRMS *m/z* (ESI) calcd for C₂₃H₁₈NO₂S [M+H]⁺ 372.1053, found: 372.1060.

3-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2p):

1H), 7.8-5 (d, J = 4.5 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.56 (d, J = 5.0 Hz, 2H), 3.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 136.4, 131.8, 130.6, 128.1, 127.9, 127.8, 127.0, 126.8, 126.4, 125.1, 124.6, 122.2, 119.6, 115.4, 114.9, 39.5 HRMS *m*/*z* (ESI) calcd for C₁₈H₁₆NO₂S [M+H]⁺ 330.0350, found: 330.0343.

3-bromo-7-(methylsulfonyl)-7H-benzo[c]carbazole (2q):

$$\begin{array}{l} \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} 116.0 \text{ mg}, 78\% \text{ yield}; \text{ white solid}; ^{1}\text{H NMR (500 MHz, CDCl}_{3}) \\ & \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\$$

7-(methylsulfonyl)-3-(trifluoromethyl)-7H-benzo[c]carbazole (2r):

1H), 7.86 (d, J = 9.0 Hz, 1H), 7.56 – 7.54 (m, 2H), 3.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 137.4, 130.1, 129.7, 129.2, 126.9, 126.8, 126.7, 126.6, 126.6, 126.1, 125.4, 124.7, 124.4, 123.2, 123.0, 123.0, 122.9, 122.2, 119.3, 115.5, 114.8, 39.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.02; HRMS *m/z* (ESI) calcd for C₁₈H₁₃F₃NO₂S [M+H]⁺ 364.0614, found: 364.0615.

4-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2s):

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 136.8, 133.2, 130.1, 128.3, 127.3, 126.8, 126.4, 125.5, 125.1, 124.6, 122.6, 122.4, 119.7, 115.2, 114.9, 39.6. HRMS *m/z* (ESI) calcd for C₁₇H₁₃ClNO₂S [M+H]⁺ 330.0350, found: 330.0349.

2-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2s'):

128.5, 126.7, 126.4, 125.9, 124.7, 122.8, 122.1, 118.9, 114.9, 114.5, 39.6. HRMS *m/z* (ESI) calcd for C₁₇H₁₃ClNO₂S [M+H]⁺ 330.0350, found: 330.0344.

1-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2t):

1H), 4.04 (d, J = 23.0 Hz, 6H), 3.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.1,
157.4, 138.0, 137.7, 130.6, 127.2, 126.0, 124.3, 122.8, 121.8, 118.6, 118.6, 114.8,
110.6, 96.52, 95.1, 55.7 55.7, 39.1. HRMS *m/z* (ESI) calcd for C₁₉H₁₈NO₄S [M+H]⁺
356.0951, found: 356.0944.

9-(methylsulfonyl)-9H-naphtho[2,1-c]carbazole (2v):

100.7 mg, 73% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, *J* = 9.5 Hz, 1H), 8.68 – 8.66 (m, 2H), 8.54 (d, *J* = 7.0 Hz, 1H), 8.46 (d, *J* = 9.0 Hz, 1H), 8.30 (t, *J* = 5.0 Hz, 1H), 7.92 (t, *J* =

8.6 Hz, 2H), 7.66 (t, J = 7.0 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.53

- 7.51 (m, 2H), 2.97 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 137.0, 131.0, 130.6, 128.6, 127.5, 127.2, 127.1, 126.9, 126.7, 126.3, 124.4, 122.9, 122.8, 122.7, 122.0, 120.8, 114.8, 113.7, 39.1. HRMS *m/z* (ESI) calcd for C₂₁H₁₆NO₂S [M+H]⁺ 346.0896, found: 346.0905.

6-(methylsulfonyl)-6H-benzofuro[4,5-c]carbazole (2w):

93.8 mg, 70% yield; white solid; ¹H NMR (500 MHz, CDCl₃)
δ 8.69 (d, J = 9.0 Hz, 1H), 8.60 (t, J = 3.5 Hz, 1H), 8.51 (d, J = 9.0 Hz, 1H), 8.36 - 8.34 (m, 1H), 8.25 (d, J = 9.0 Hz, 1H), 7.91

(d, J = 9.0 Hz, 1H), 7.83 (s, 1H), 7.57 – 7.55 (m, 2H), 7.34 (s, 1H), 3.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 151.7, 144.9, 138.2, 135.8, 127.0, 126.6, 125.5, 125.4, 124.5, 124.0, 122.5, 120.8, 120.3, 115.0, 114.5, 113.5, 105.8, 39.1. HRMS *m/z* (ESI) calcd for C₁₉H₁₄NO₃S [M+H]⁺ 336.0689, found: 336.0688.

6-(methylsulfonyl)-6H-thieno[2,3-*c*]carbazole (2x):

110.8 mg, 92% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.29 – 8.19 (m, 3H), 7.97 – 7.94 (m, 2H), 7.72 (d, *J* = 5.5 Hz, 1H), 7.50 – 7.47 (m, 2H), 2.94 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ

138.0, 136.7, 135.8, 133.0, 129.1, 126.9, 126.1, 124.4, 121.5, 121.5, 121.2, 120.1, 114.7, 111.6, 38.7. HRMS *m/z* (ESI) calcd for C₁₅H₁₂NO₂S₂ [M+H]⁺ 302.0304, found: 302.0291.

10-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2y):

1H), 7.74 (t, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 1H), 3.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 137.1, 136.3, 131.0, 130.2, 129.7, 129.3, 128.6, 128.1, 127.9, 126.3, 125.3, 123.2, 122.0, 118.6, 115.8, 114.1, 39.5. HRMS *m/z* (ESI) calcd for C₁₇H₁₃ClNO₂S [M+H]⁺ 330.0350, found: 330.0347.

10-bromo-7-(methylsulfonyl)-7H-benzo[c]carbazole (2z):

MHz, CDCl₃) δ 136.9, 136.7, 131.0, 129.71, 129.3, 129.1, 128.6, 127.9, 125.3, 125.0,

123.2, 118.5, 117.9, 116.2, 114.0, 39.5 HRMS *m/z* (ESI) calcd for C₁₇H₁₃BrNO₂S [M+H]⁺ 373.9845, found:373.9842.

9-methyl-7-(methylsulfonyl)-7H-benzo[c]carbazole (2aa):

J= 7.5 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 2.99 (s, 3H), 2.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 136.8, 136.3, 131.1, 129.1, 128.6, 128.2, 127.3, 125.8, 124.9, 124.6, 123.6, 121.9, 119.81, 115.1, 114.4, 39.2, 22.1. HRMS *m/z* (ESI) calcd for C₁₈H₁₆NO₂S [M+H]⁺ 310.0896, found: 310.0905.

9-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2ab):

101.3 mg, 77% yield; white solid; ¹H NMR (500 MHz, CDCl₃)
δ 8.65 (d, J = 8.5 Hz, 1H), 8.41 (d, J = 8.5 Hz, 1H), 8.34 (d, J =
9.0 Hz, 2H), 8.01 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 9.5 Hz, 1H),

7.72 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 3.04 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 138.4, 136.7, 132.2, 131.0, 129.3, 129.2, 128.5 127.7, 125.3, 125.2, 124.9, 123.3, 122.9, 118.9, 115.0, 114.0, 39.7. HRMS *m/z* (ESI) calcd for C₁₇H₁₃ClNO₂S [M+H]⁺ 330.0350, found: 330.342.

1,10-dichloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2ac):

130.2, 130.0, 129.0, 128.9, 128.3, 127.5, 127.4, 126.8, 126.2, 125.5, 118.3, 114.9, 114.89, 39.7. HRMS *m*/*z* (ESI) calcd for C₁₇H₁₂Cl₂NO₂S [M+H]⁺ 363.9960, found: 363.9958.

7-(methylsulfonyl)-6,7-dihydro-5H-benzo[c]carbazole (Intermediate E):

Hz, 2H), 3.08 (d, *J* = 7.0 Hz, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 137.0, 134.5, 131.4, 128.0, 127.3, 127.0, 126.5, 124.4, 124.3, 123.3, 120.2, 117.9, 114.4, 40.8, 29.3, 22.3.

(C) Spectra (NMR Spectra)

7-(methylsulfonyl)-7H-benzo[c]carbazole (2a):

¹³C NMR (125 MHz, CDCl₃)

7-(ethylsulfonyl)-7H-benzo[c]carbazole (2b):

¹³C NMR (125 MHz, CDCl₃)

7-(butylsulfonyl)-7H-benzo[c]carbazole (2c):

¹³C NMR (125 MHz, CDCl₃)

7-(benzylsulfonyl)-7H-benzo[c]carbazole (2e):

7-tosyl-7H-benzo[*c*]carbazole (2f):

7-((4-methoxyphenyl)sulfonyl)-7H-benzo[c]carbazole (2g):

¹³C NMR (125 MHz, CDCl₃)

7-((4-chlorophenyl)sulfonyl)-7H-benzo[c]carbazole (2h):

7-(m-tolylsulfonyl)-7H-benzo[c]carbazole (2i):

¹³C NMR (125 MHz, CDCl₃)

7-(o-tolylsulfonyl)-7H-benzo[c]carbazole (2j)

4-((7H-benzo[c]carbazol-7-yl)sulfonyl)morpholine (2k):

C NMR (125 MHz, CDCl₃)

7-(thiophen-2-ylsulfonyl)-7H-benzo[c]carbazole (2l):

3-methyl-7-(methylsulfonyl)-7H-benzo[c]carbazole (2m):

3-methoxy-7-(methylsulfonyl)-7H-benzo[c]carbazole (2n):

¹H NMR (500 MHz, CDCl₃)

7-(methylsulfonyl)-3-phenyl-7H-benzo[c]carbazole (20) :

3-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2p):

3-bromo-7-(methylsulfonyl)-7H-benzo[c]carbazole (2q):

7-(methylsulfonyl)-3-(trifluoromethyl)-7H-benzo[c]carbazole (2r):

27,335 27,277 27,277 27,277 27,277 27,275 27

0_5,0

F₃C

-39.750

2-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2s'):

2,4-dimethoxy-7-(methylsulfonyl)-7H-benzo[c]carbazole (2u):

9-(methylsulfonyl)-9H-naphtho[2,1-c]carbazole (2v):

6-(methylsulfonyl)-6H-benzofuro[4,5-*c*]carbazole (2w):

S43

6-(methylsulfonyl)-6H-thieno[2,3-c]carbazole (2x):

10-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2y):

10-bromo-7-(methylsulfonyl)-7H-benzo[c]carbazole (2z):

9-methyl-7-(methylsulfonyl)-7H-benzo[c]carbazole (2aa):

9-chloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2ab):

1,10-dichloro-7-(methylsulfonyl)-7H-benzo[c]carbazole (2ac):

7-(methylsulfonyl)-6,7-dihydro-5H-benzo[c]carbazole (Intermediate E):

C NMR (125 MHz, CDCl₃)

(D) Reference

- [1] J. A. Stafford, J. E. McMurry, Tetrahedron Lett., 1988, 29, 2531-2534.
- [2] X. Fan, L.-Z. Yu, Y. Yu and M. Shi, Org. Lett., 2017, 19, 4476-4479.