Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Novel Electro-fluorescent Materials with Hybrid Local and Charge-transfer

(HLCT) State for Highly Efficient Nondoped Pure Blue OLEDs

Mizhen Sun,^a Mingming Zhang,^b Yannan Zhou,^a Mingliang Xie,^a Lizhi Chu,^a Xin Wang,^a Qikun Sun,^a Fengjia Liu,^a Wenjun Yang,^a and Shanfeng Xue^{a*}

^{a.} Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science &

Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao

266042, China.

*Corresponding author. E-mail: <u>sfxue@qust.edu.cn;</u>

^{b.} Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, China.

Contents

- SI-1 Calculation formula.
- **SI-2** Supplementary figures
- **SI-3** Supplementary tables

Contents

SI-1 Calculation formula.

Lippert-Mataga model: The influence of solvent environment on the optical property of our compounds can be understood using the Lippert-Mataga equation, a model that describes the interactions between the solvent and the dipole moment of solute:

$$hc(v_{a} - v_{f}) = hc(v_{a}^{0} - v_{f}^{0}) - \frac{2(\mu_{e} - \mu_{g})^{2}}{a^{3}} f(\varepsilon, n)$$
(1)

where f is the orientational polarizability of solvents, μe is the dipole moment of excited state, μg is the dipole moment of ground state; a is the solvent cavity (Onsager) radius, ϵ and n are the solvent dielectric and the solvent refractive index, respectively.

The EQE measurement method for the non-doped device:

$$EQE = \frac{\pi \cdot L \cdot e}{683 \cdot I \cdot h \cdot c} \cdot \frac{\int_{380}^{780} I(\lambda) \cdot \lambda \cdot d\lambda}{\int_{380}^{780} I(\lambda) \cdot K(\lambda) \cdot d\lambda}$$
Formula S1

where L (cd m⁻²) is the total luminance of device, I(A) is the current flowing into the EL device, λ (nm) is EL wavelength, $I(\lambda)$ is the relative EL intensity at each wavelength and obtained by measuring the EL spectrum, $K(\lambda)$ is the Commission International de L'Eclairage chromaticity (CIE) standard photopic efficiency function, e is the charge of an electron, h is the Planck's constant, c is the velocity of light.

S I -2 Supporting Figures

Fig. S1 ¹H-NMR Spectrum of *t*BuPPITZ in CDCl₃.

Fig. S2 Mass Spectrum (M+H) of *t*BuPPITZ.

Fig. S3 ¹H-NMR Spectrum of PPITZCN in CDCl₃.

Fig S4. Mass Spectrum (M+H) of PPITZCN.

Fig S5. Absorption spectra of *t*BuPPITZ and PPITZCN in different polar solvents.

Fig. S7 Electrochemical spectrogram of tBuPPITZ and PPITZCN.

Fig. S8 The non-doped devices performance of blue-HLCT emitters based on PPI with $0.08 \le \text{CIEy} \le 0.10$ and $\text{EL} \le 450$ nm in the past three years.

SI-3 Supporting tables

Table S1. Absorption and emission peaks in different solvents with different polarities

of *t*BuPPITZ and PPITZCN.

tBuPPITZ PPITZCN

	$\lambda_{exmax}/\lambda_{emmax}$ [nm]	$\lambda_{exmax}/\lambda_{emmax}$ [nm]		
Hexane	363/400	360/397		
Butylether	364/404	360/404		
Isopropylether	364/405	360/405		
Chloroform	364/418	362/429		
Ethylether	365/408	359/405		
Ethylacetate	363/420	358/406		
THF	364/419	363/421		
Dichloromethane	363/434	361/424		
DMF	365/441	360/430		
Acetone	362/433	360/440		
Acetonitrile	361/440	359/439		

Table S2. Φ_{PL} of *t*BuPPITZ and PPITZCN in different solvents with different polarities and in neat film.

	<i>t</i> BuPPITZ	PPITZCN
hexane	75%	49%
Isopropyl ether	99%	66%
THF	99%	75%
acetonitrile	89%	51%
film	72%	69%

Table S3. Relevant solvents and corresponding detailed data used to draw Stokes curve.

	tBuPPITZ	PPITZCN		
	polarization factor (<i>f</i>)/λ _{exmax} /λ _{emmax} [nm]/ stockes shift	polarization factor (f)/λ _{exmax} /λ _{emmax} [nm]/ stockes shift		
Hexane	0.0012/363/400/2548.209366	0.0012/360/397/2713.265932		
Butylether	0.096/364/404/2720.052225	0.096/360/404/3025.30253		
Isopropylether	0.145/364/405/2781.169448	0.145/360/405/3086.419753		
Ethylether	0.167/365/408/2887.456352	0.167/359/405/3163.795179		
Ethylacetate	0.2/363/420/3738.685557	0.2/358/406/3302.419022		
THF	0.21/364/419/3606.179024	0.21/363/421/3795.240245		
Acetone	0.284/362/433/4529.621171	0.284/360/440/5050.505051		
Acetonitrile	0.305/361/440/4973.558298	0.305/359/439/5076.109923		

Table S4. Detailed energy level data of *t*BuPPITZ and PPITZCN.

S/T ^(a) [eV]	tBuPPITZ	PPITZCN		
S1/T1	3.583/3.035	3.765/3.052		
S2/T2	4.125/3.352	3.966/3.344		
S3/T3	4.438/3.609	4.167/3.629		
S4/T4	4.591/3.708	4.469/3.684		
S5/T5	4.669/3.811	4.508/3.744		
S6/T6	4.819/3.931	4.685/3.808		
S7/T7	4.88/4.142	4.704/3.931		
S8/T8	4.942/4.18	4.864/3.971		
S9/T9	4.979/4.207	4.926/4.179		
S10/T10	5.051/4.255	5.021/4.215		

^(a) Single excited state/Triple excited state (S/T) energy levels.

Emitters	V _{on} [V]	PE [lm/W]	$\lambda_{EL} \ [nm]$	EQE _{max} [%]	CIE (x, y)	Ref.
<i>t</i> BuPPITZ	4.4	2.35	436	6.0	(0.16, 0.09)	This work
PPITZCN	5.0	3.01	448	7.5	(0.16, 0.10)	This work
CPPI	3.2	2.44	438	3.39	(0.157, 0.089)	[1]
MB	2.9		440	3.68	(0.157, 0.084)	[2]
MCNPIBI	3.8	0.5	441	3.69	(0.15, 0.08)	[3]
SPCN	3.5	4.6	444	7.1	(0.154, 0.087)	[4]
DP	2.9	4.8	436	6.4	(0.153, 0.087)	[5]
SAF-DPI	2.8	4.39	432	4.77	(0.154, 0.092)	[6]
PHT-PPI	3.0	3.25	448	5.12	(0.15, 0.08)	[7]
DmPy-PPI	3.1	1.97	437	3.74	(0.15, 0.08)	[8]

Table S5. The non-doped devices performance of blue emitters based on PPI with 0.08 \leq CIEy \leq 0.10 and $\lambda_{EL} \leq$ 450 nm in the past three years.

- T. Sudyoadsuk, S. Petdee, P. Chasing, P. Therdkatanyuphong, C. Kaiyasuan,
 W. Waengdongbung, S. Namuangruk and V. Promarak, A solution-processable
 hybridized local and charge-transfer (HLCT) phenanthroimidazole as a deep blue emitter for efficient solution-processed non-doped electroluminescence
 device, *Dyes Pigm*, 2021, **195**, 109712.
- 2 T. Shan, Y. L. Liu, X. Y. Tang, Q. Bai, Y. Gao, Z. Gao, J. Y. Li, J. Deng, B. Yang, P. Lu and Y. G. Ma, Highly Efficient Deep Blue Organic Light-Emitting

Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off, *ACS Appl. Mater. Interfaces*, 2016, **8**, 28771–28779.

- 3 J. D. Girase, J. Tagare, S. Mukherjee, T. Chakrabrati, A. Perumal and S. Vaidyanathan, Efficient deep blue (CIE ~0.08) fluorophore-based benzimidazole with hybridized local and charge transfer (HLCT) excited state for OLEDs, *Journal of Information Display*, 2022, 23, 151-162.
- 4 S. B. Xiao, X. Z. Tian, Y. Gao, H. C. Liu, C. J. Zhou, S. T. Zhang and B. Yang, Enhanced blue-emissive electroluminescence performance with rational donor substitution *Dyes Pigm*, 2022, **204**, 110451.
- 5 S. B. Xiao, Y. Gao, R. Z. Wang, H. C. Liu, W. J. Li, C. J. Zhou, S. F. Xue, S. T. Zhang, B. Yang and Y. G. Ma, Highly efficient hybridized local and Charge-transfer (HLCT) Deep-blue electroluminescence with excellent molecular horizontal orientation, *Chem. Eng. J*, 2022, **440**, 135911.
- 6 C. Kaiyasuan, P. Chasing, P. Nalaoh, P. Wongkaew, T. Sudyoadsuk, K. Kongpatpanich and V. Promarak, Twisted Phenanthro[9,10-d]imidazole Derivatives as Non-doped Emitters for Efficient Electroluminescent Devices with Ultra-Deep Blue Emission and High Exciton Utilization Efficiency, *Chem Asian J*, 2021, **16**, 1–11.
- 7 G. X. Yang, J. J. Zhu, S. S. Tang, H. J. Tan, X. H, J. X. Jian, X. H. Zheng, and
 Q. X. Tong, Effective Energy Transfer for Green, Orange, and Red PHOLEDs
 Based on Bipolar Deep-blue Emitter with Low Efficiency Roll-off at High

Brightness, Advanced Photonics Research, 2021, 2, 2100031.

8 G. X. Yang, Y. W, Chen, J. J. Zhu, J. Y. Song, S. S. Tang, D. G. Ma and Q. X. Tong, Rational design of pyridine-containing emissive materials for high performance deep-blue organic light-emitting diodes with CIEy ~ 0.06, *Dyes Pigm*, 2021, **187**, 109088.