Supporting Information

Preparation and Properties of A Novel Poly(lactic-acid)-based Thermoplastic Vulcanizate from Both Experi-ments and Simulations

Xue Li, ^{* a} Hailan Kang,^b Qiulan Luo,^a and Jianxiang Shen ^{* c}

^a Institute of Novel Materials, Jiaxing Nanhu University, Jiaxing 314001, P.R. China

^b College of Materials Science and Engineering, Shenyang University of Chemical Technology,

Shenyang110142, China

^c Department of Polymer Science and Technology, Jiaxing University, Jiaxing 314001, China

Fig. S1. Stress-strain curve of (a) pure SeRM and (b) bio-based TPVs with different blending ratios of SeRM/PLA

TPV Composition ^α	$R/P (w/w)^{\beta}$	$\sigma_{_T}$ (MPa) ^y	\mathcal{E}_b (%) ⁸	Preparation Method	Ref.
SeRM/PLA	70/30	~14.7	~164	Dynamical Vulcanization	
NR/PLA	40/60	~20	~100	Dynamical Vulcanization	[1]
NR/PLA	50/50	10.9	240	Dynamical Vulcanization	[2]
ENR/PLA	70/30	10.9	240	Latex Mixing, Melt Mixing	[3]
BPE/PLA	60/40	17.8	184	in-situ Dynamical Crosslinking	[4]
PLBSI/PLA	60/40	19.6	314	in-situ Dynamical Vulcanization	[5]
EVA/PLA	60/40	20	300	in-situ Dynamical Vulcanization	[6]
EMMA-Zn/EBA-GMA/PLA	10/10/80	36.2	229.1	Dynamical Vulcanization	[7]
ACM/EMAA/PLA	60/6/40	~3.5	~218	Reactive Blending	[8]
EUG-g-GMA/PLA	40/60	~35	285	Dynamical Vulcanization	[9]

Table S1. Comparing mechanical properties of SeRM/PLA TPV with other PLA-basd TPVs

^α polymer abbreviations:

NR: nature rubber; ENR: epoxidized natural rubber; BPE: bio-based polyester;

EVA: ethylene-co-vinyl acetate; PLBSI: poly (butanediol/lactate/sebacate/itaconate);

EBA-GMA: ethylene/n-butyl acrylate/glycidyl methacrylate;

EMMA-Zn: zinc ionomer of ethylene-methyacrylic acid copolymer;

ACM: acrylic rubber; EUG-GMA: eucommia ulmoides gum/glycidyl methacrylate

^βweight ratio of rubber to thermoplastic

^ytensile strength

 $^{\delta}$ elongation at break

Reference

- [1] Si W J, Yuan W Q, Li Y D, et al. Tailoring toughness of fully biobased poly(lactic acid)/natural rubber blends through dynamic vulcanization. Polymer Testing, 2018, 65: 249-255.
- [2] Yuan D S, Ding J P, Mou W J, et al. Bio-based polylactide/epoxidized natural rubber thermoplastic vulcanizates with a co-continuous phase structure. Polymer Testing, 2017, 64: 200-206.
- [3] Cao L M, Liu C, Zou D J, et al. Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohydrate Polymers, 2020, 230: 115618.
- [4] Kang H L, Hu X R, Li M Q, et al. Novel biobased thermoplastic elastomer consisting of synthetic polyester elastomer and polylactide by in situ dynamical crosslinking method. RSC Advances, 2015, 5(30): 23498-23507.
- [5] Hu X R, Kang H L, Li Y, et al. Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials. Polymer, 2017, 108: 11-20.
- [6] Ma P M, Xu P W, Liu W C, et al. Bio-based poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates by dynamic crosslinking: structure vs. property. RSC Advances, 2015, 5(21): 15962-15968.

- [7] Liu H Z, Chen F, Liu B, et al. Super Toughened Poly(lactic acid)Ternary Blends by Simultaneous Dynamic Vulcanization and Interfacial Compatibilization. Macromolecules, 2010, 43(14): 6058-6066.
- [8] Jantanasakulwong K, Kobayashi Y, Kuboyama K, et al. Thermoplastic vulcanizate based on poly (lactic acid) and acrylic rubber blended with ethylene ionomer. Journal of Macromolecular Science, Part B., 2016, 55(11):1068-1085.
- [9] Wang Y, Liu J H, Xia L, et al. Fully Biobased Shape Memory Thermoplastic Vulcanizates from Poly(Lactic Acid) and Modified Natural Eucommia Ulmoides Gum with Co-Continuous Structure and Super Toughness. Polymers, 2019, 11(12), 2040.