Click Functionalized Biocompatible Gadolinium Oxide Core-shell Nanocarriers for Imaging of Breast Cancer Cells

Shifaa M. Siribbal,^{a+} Shaista Ilyas,^{a+} Alexander M. Renner,^a Sumiya Iqbal,^a Sergio Muñoz Vázquez,^b Abubakar Moawia,^{e,f} Martin Valldor,^{c,d},Muhammad S. Hussain,^{e,f},Klaus Schomäcker,^b and Sanjay Mathur^{a*}

^a Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany

^b Clinic and Polyclinic for Nuclear medicine, University of Cologne, Kerpenerstrasse 62, 50937 Cologne, Germany

^cMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany

^d Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway

^e Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany

^f Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany

^{*}Correspondence: <u>sanjay.mathur@uni-koeln.d</u>

Figure S1: TEM images of iron oxide particles with different magnification **A-B** oleic aicd-capped Fe₃O₄ nanospheres, **C-D** Fe₃O₄ NPs after the removal of oleic acid

Figure S2: A-B: TEM images with different magnification of SiO₂@Fe₃O_{4(cubes)} NPs, C- SEM image of SiO₂@Fe₃O_{4(spheres)} NPs, and D- TEM image of Gd₂O₃@SiO₂@Fe₃O_{4(spheres)} showing the clear demarcation of thin layer of gadolinium oxide (15 ± 5 nm) on core shell structure.

Figure S3: A-B- TEM Images of $Gd_2O_3@SiO_2@Fe_3O_{4(cubes)}$ nanocarriers C- High resolution TEM of $Gd_2O_3@SiO_2@Fe_3O_{4(cubes)}$ carriers (the inset for SAED pattern), and D- EDX analysis of $Gd_2O_3@SiO_2@Fe_3O_{4(cubes)}$ nanocarriers

Figure S4: A-D- Dynamic light scattering of the nanocarriers (cube shaped iron oxide as a core) in water showed an increase in average hydrodynamic diameter of nanocarriers after different conjugation steps. **E-H-** Zeta potential measurements displayed a change in surface charge after the attachment of different molecule used for the conjugation of estrogen molecules.

TableS1DLS and Zeta potential

Nanocarriers	DLS (d.nm)	Zeta potential (mV)
$Gd_2O_3@SiO_2@Fe_3O_4~({\tt cube}~{\tt as}~{\tt a~core})$	165 ±7	-10.1
$APTM-Gd_2O_3@SiO_2@Fe_3O_4$	259 ±11	+11.6
$Br-Gd_2O_3@SiO_2@Fe_3O_4$	251 ±17	-13.0
estrogen-Gd ₂ O ₃ @SiO ₂ @Fe ₃ O ₄	595 ±11	-15.8

Figure S5: XRD diffraction pattern of $Gd_2O_3@SiO_2@Fe_3O_4$ NPs after conjugation of estrogen via click reaction. The references for magnetite (JCPDS C72-2303) is in green, and for Gd_2O_3 (JCPDS C12-0797) in blue.

Figure S6: Flow cytometry measurements of FITC conjugated bare-Gd₂O₃@SiO₂@Fe₃O₄ carriers with breast cancer cell line MCF7.

Figure S7: Flow cytometry measurements of pure MCF7 breast cancer cells without the addition of nanocarriers.

Figure S8: Dynamic light scattering of the nanocarriers (spherical iron oxide as a core) in water showed an increase in average hydrodynamic diameter of nanocarriers as compared to TEM analysis. Zeta potential measurements displayed a negative charge when no surface linker or ligand is attached.