Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Fig. S1 The detailed sketch of human tooth.

Fig. S2. a-c) Cross-sectional SEM images of CaCO₃ layers and the magnified crosssectional FESEM images show the morphological features. d-e) Plane SEM images of CaCO₃ layers.

Fig. S3. The microstructure of CaCO₃/FAP heterogeneous structured composites. a-b) The plane SEM images of CaCO₃/FAP heterogeneous structured composites. c-d) The cross-section SEM images of CaCO₃/FAP heterogeneous structured composites.

Fig. S4. XRD patterns of FAP/CaCO₃ heterogeneous structured composites.

Fig. S5. High-resolution XPS profiles of the FAP/CaCO₃ heterogeneous structured

composites: a) C 1s, b) O 1s c) P 2p, d) F 1s, e) Ca 2p and f) Mg 1s.

Fig. S6. TGA data for the synthetic FAP/CaCO₃ heterogeneous structured composites and the CaCO₃ layer.

Fig. S7. Load–displacement curves for the FAP/CaCO₃ heterogeneous structured composites and FAP arrays.

Table S1.	Compared v	with the pre	paration m	ethods of	calcium	phosphate	and calcium
-----------	------------	--------------	------------	-----------	---------	-----------	-------------

Literature	Synthesis method	Mechanical properties
Preparation of Calcite and Aragonite	large-area aragonite film is	
Complex Layer Materials Inspired	deposited onto a calcite film	
from Biomineralization. Crystal	in the presence of magnesium	
Growth & Design, 2009 ^[1] .	ion to biomimetically	
	construct an aragonite-calcite complex structure	
Bioinspired enamel-like oriented	developed a biomimetic,	elastic
minerals on general surfaces:	anodic alumina oxide (AAO)-	modulus of
towards improved mechanical	assisted, double-layered gel	52 GPa and
properties. J. Mater. Chem. B,	system to fabricate well-	hardness of
2019 ^[2] .	oriented HAP crystals on a	0.73 GPa
	variety of substrates	
Artificial enamel induced by phase	synthesized an enamel	elastic
transformation of amorphous	architecture comprising	modulus of
nanoparticles. Scientific Reports,	oriented HAP nanorods via	63.4 GPa
2017 ^[3] .	geometrical selection induced	and
	by reactive amorphous	hardness of
	nanoparticles and the	2.87 GPa
	corresponding phase	
	transformations.	

carbonate array materials reported in literature.

Solution-Air Interface Synthesis and	Fabricate a largescale	
Growth Mechanism of Tooth	translucent hydroxyapatite	
Enamel-like	(HAP) and chondroitin sulfate	
Hydroxyapatite/Chondroitin Sulfate	(ChS) composite films by a	
Films. Crystal Growth & Design,	unique solution-air interface	
2012 ^[4] .	method.	
Bioprocess-Inspired Room-	adopt a bioprocess-inspired	hardness of
Temperature Synthesis of Enamel-	room-temperature	2.42 GPa
like Fluorapatite/Polymer	mineralization technique to	and
Nanocomposites Controlled by	synthesize a multilayered	Young's
Magnesium Ions. ACS Appl. Mater.	array of enamel-like columnar	modulus of
Interfaces, 2021 ^[5] .	FAP/polymer nanocomposites	81.5 GPa

Reference.

- [1] LIU R, XU X, CAI Y, et al. Preparation of calcite and aragonite complex layer materials inspired from biomineralization [J]. Crystal Growth and Design, 2009, 9(7): 3095-9.
- [2] CHEN Z, MIAO Z, ZHANG P, et al. Bioinspired enamel-like oriented minerals on general surfaces: towards improved mechanical properties [J]. Journal of Materials Chemistry B, 2019, 7(34): 5237-44.
- [3] ONUMA K, IIJIMA M. Artificial enamel induced by phase transformation of amorphous nanoparticles [J]. Scientific reports, 2017, 7(1): 1-10.
- [4] XU Y, MA G, WANG X, et al. Solution-air interface synthesis and growth mechanism of tooth enamel-like hydroxyapatite/chondroitin sulfate films [J]. Crystal growth & design, 2012, 12(7): 3362-8.
- [5] LI Y, PING H, WEI J, et al. Bioprocess-Inspired Room-Temperature Synthesis of Enamel-like Fluorapatite/Polymer Nanocomposites Controlled by Magnesium Ions [J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25260-9.