Supporting Information

NMR analysis of the enantiomeric purity of chiral diols by a

new chiral boron agent

Xuebo Zhang,^{a,b} Jing Xu,^{a,b} Zhaofeng Sun,^b Guangling Bian*^b and Ling Song*^b

a. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China;

 b. The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China;

Email: glb@fjirsm.ac.cn; songling@fjirsm.ac.cn

Table of contents

1. Crystallographic data	2
2. NMR spectra data	3
Figure S1: ¹ H NMR of boric acid D (400 MHz, CDCl ₃)	3
Figure S2: ¹³ C NMR of boric acid D (100 MHz, CDCl ₃)	3
Figure S3: COSY of boric acid D (400 MHz, CD ₂ Cl ₂)	4
Figure S4: HMBC of boric acid D (400 MHz, CDCl ₃)	5
Figure S5. NMR data attesting for the absence of racemization in the derivatization process	6
Figure S6. NMR data of optimization of derivatization reaction conditions	6
Figure S7. ¹ H NMR of boric acid D and racemic 1	7
Figure S8. ¹ H NMR of boric acid D and racemic 2	7
Figure S9. ¹ H NMR of boric acid D and <i>R</i> - 2	8
Figure S10. ¹ H NMR of boric acid D and racemic 3	8
Figure S11. ¹ H NMR of boric acid D and <i>R</i> -3	9
Figure S12. ¹ H NMR of boric acid D and racemic 4	9
Figure S13. ¹ H NMR of boric acid D and S-4	10
Figure S14. ¹ H NMR of boric acid D and racemic 5	10
Figure S15. ¹ H NMR of boric acid D and S-5	11
Figure S16. ¹ H NMR of boric acid D and racemic 6	11
Figure S17. ¹ H NMR of boric acid D and racemic 7	12
Figure S18. ¹ H NMR of boric acid D and <i>R</i> -7	12
Figure S19. ¹ H NMR of boric acid D and racemic 8	13
Figure S20. ¹ H NMR of boric acid D and (<i>1R</i> , <i>2R</i> , <i>3S</i> , <i>5R</i>)-(-)-8	13
Figure S21. ¹ H NMR of boric acid D and racemic 9	14
Figure S22. ¹ H NMR of boric acid D and racemic 10	14
Figure S23. ¹ H NMR of boric acid D and racemic 11	15
Figure S24. ¹ H NMR of boric acid D and racemic 12	15
Figure S25. Ee values of nonracemic 1 determined by gravimetry and ¹ H NMR spectra with ¹	boric
acid D	16

1. Crystallographic data

The crystal structure of boric acid D

Table S1. Crystal data and structure refinement for boric acid D.

Identification code	2061749
Empirical formula	C ₂₉ H ₂₆ BN ₂ O _{3.5}
Formula weight	469.33
Temperature	150.04 K
Crystal system, space group	Orthorhombic, $P2_12_12_1$
a/Å	7.7796(5)
b/Å	13.1314(11)
c/Å	24.231(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2475.4(3)
Z	4
pcalcg/cm ³	1.259
µ/mm ⁻¹	0.082
F (000)	988.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.15
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.206 to 60.058
Index ranges	$-9 \le h \le 10, -15 \le k \le 18, -34 \le l \le 25$
Reflections collected	21320
Independent reflections	7192 [$R_{int} = 0.0418, R_{sigma} = 0.0470$]
Data/restraints/parameters	7192/3/339
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451, wR_2 = 0.1076$
Final R indexes [all data]	$R_1 = 0.0499, wR_2 = 0.1108$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.33
Flack parameter	0.5(10)

2. NMR spectra data

Figure S1: ¹H NMR of boric acid D (400 MHz, CDCl₃)

 $\begin{array}{c} 3.38\\ 3.48\\ 3.48\\ 3.58\\$

Figure S2:¹³C NMR of boric acid D (100 MHz, CDCl₃)

Figure S4: HMBC of boric acid D (400 MHz, CDCl₃)

Figure S5. NMR data attesting for the absence of racemization in the derivatization process

Figure S6. NMR data of optimization of derivatization reaction conditions

Figure S8. ¹H NMR of boric acid D and racemic 2

Figure S10. ¹H NMR of boric acid D and racemic **3**

Figure S12. ¹H NMR of boric acid D and racemic 4

Figure S14. ¹H NMR of boric acid D and racemic 5

Figure S16. ¹H NMR of boric acid D and racemic **6**

Figure S17. ¹H NMR of boric acid D and racemic 7

Figure S18. ¹H NMR of boric acid D and *R*-7

Figure S19. ¹H NMR of boric acid D and racemic 8

Figure S20. ¹H NMR of boric acid D and (1R,2R,3S,5R)-(-)-8

Figure S22. ¹H NMR of boric acid D and racemic **10**

Figure S23. ¹H NMR of boric acid D and racemic 11

Figure S24. ¹H NMR of boric acid D and racemic **12**

Figure S25. Ee values of nonracemic 1 determined by gravimetry and ¹H NMR spectra with boric acid D.

