Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Combined Experimental and Computational Study of Al₂O₃ Catalyzed Transamidation of Secondary Amides with Amines.

Md. Ayub Ali, ^{a*} Ashutosh Nath, ^b Md. Midul Islam, ^a Sharmin Binte Shaheed, ^a and Ifat Nur Dibbo ^a

AUTHOR INFORMATION

Corresponding Author

Md. Ayub Ali^a -Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh; e-mail :<u>shuvro070@chem.buet.ac.bd</u>; ORCID: <u>https://orcid.org/</u>0000-0002-0915-7771 Authors

Ashutosh Nath^b - Department of Chemistry, University of Massachusetts Boston, MA 02125-3393, USA; e-mail: <u>ashutosh.nath001@umb.edu</u>; ORCID: <u>https://orcid.org/0000-0001-8302-0493</u>

Md. Midul Islam^a -Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh;e-mail: midulislamchembuet@gmail.com

Sharmin Binte Shaheed^a -*Catalysis and Organic Synthesis Laboratory, Department of Chemistry,* Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

Ifat Nur Dibbo^a -Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

Supporting information

Table of Contents:	Page No.
1. Synthesis of N-Phenyl Benzamide	<i>S2</i>
2. Synthesis of N-(o-methyl) Phenyl Benzamide	<i>S3</i>
3. Synthesis of N-n-Octyl Benzamide	<i>S4</i>
4. Synthesis of N-(m-methyl) Phenyl Benzamide	<i>S5</i>
5. Synthesis of N-Benzyl Benzamide	<i>S6</i>
6. Catalyst Screening	<i>S7</i>
7. Solvent Screening	<i>S8</i>
8. Reusability of Al ₂ O ₃	<i>S9</i>
9. Optimize structure of Compounds 1-5	<i>S10</i>
10. DFT Calculation Data	<i>S11</i>
11. Spectrum of Compound 1	<i>S13</i>
12. Spectrum of Compound 2	<i>S19</i>
13. Spectrum of Compound 3	S25
14. Spectrum of Compound 4	<i>S32</i>
15. Spectrum of Compound 5	S38

1. Synthesis of N-Phenyl Benzamide

For synthesis of N-Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and aniline (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 h in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 h. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S1: Synthesis of N-Phenyl Benzamide.

- ➢ Molecular weight : 197 g/mol
- \blacktriangleright Molecular formula : C₁₃NOH₁₁
- Solubility : Soluble in Chloroform.
- ► FT-IR (v KBr) : 3347, 3055, 1659, 1536, 1439, 1659, 1075 cm-1
- > 1H-NMR (400 MHz, CDCl3) : δ 8.02 (br s, 1H, -NH), 7.088(m, 2H), 7.67 (m, 2H), 7.48 (t, 1H), 7.38 (t, 2H), 7.27(m, 2H), 7.17 (t, 1H)
- 13C-NMR (100 MHz, CDCl3) : δ 165.895 (1C, C=O), 137.969 (1C),135.010 (1C), 131.844 (1C), 129.100-129.438 (2C), 128.783-129.074 (2C),127.080 (2C), 124.550 (1C), 120.30 (2C)

2. Synthesis of N-(o-methyl) Phenyl Benzamide

For synthesis of N-(o-methyl)Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and o-Toluedine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and nhexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S2: Synthesis of N-(o-methyl)Phenyl Benzamide.

- Molecular weight : 212 g/mol
- \blacktriangleright Molecular formula : C₁₄NOH₁₄
- Solubility : Soluble in Chloroform.
- ▶ FT-IR (v KBr) : 3227, 3060, 1645, 1592, 1434, 1294, 1074cm-1
- > 1H-NMR (400 MHz, CDCl3) : δ 8.067 (br s, 1H, -NH), 7.86-7.88 (m, 2H), 7.53-7.56 (t, 2H), 7.44-7.47 (t, 3H), 7.23-7.28 (m, 2H), 6.69-6.99 (m, 1H), 2.36 (s, 3H)
- > 13C-NMR (100 MHz, CDCl3) : δ 165.924 (1C, C=O), 138.989 (1C), 137.913 (1C), 131.764 (1C), 129.391 (1C), 128.86 (1C), 128.729 (2C), 125.401 (1C), 127.092 (2C), 121.031 (1C), 117.462 (1C), 21.51 (1C).

3. Synthesis of N-n-Octyl Benzamide

For synthesis of N-n-Octyl Benzamide, N- Methyl Benzamide (1 mmol) and n-Octyl amine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S3: Synthesis of N-Octyl Benzamide.

- Molecular weight : 233 g/mol
- $\blacktriangleright Molecular formula : C_{15}NOH_{23}$
- Solubility : Soluble in Chloroform.
- ► FT-IR (v KBr) : 3360, 3058, 1653, 1549, 1493, 1447, 1076cm-1
- 1H-NMR (400 MHz, CDCl3) : δ 6.368 (br s, 1H, -NH), 7.77-7.78 (m, 2H), 7.47-7.51 (t, 1H), 7.40-7.44 (t, 2H), 3.42-3.47 (m, 2H), 2.362-2.398 (m, 2H), 1.58-1.65 (m, 2H), 1.28-1.34 (m, 8H), 0.87-.91 (t, 3H)
- 13C-NMR (100 MHz, CDCl3) : δ 167.626 (1C, C=O), 134.811 (1C), 131.313 (1C), 128.525 (1C), 126.889 (1C), 40.181 (1C), 31.806 (1C), 29.675 (1C), 29.225 (1C), 29.308 (1C), 27.029 (1C), 14.097 (1C).

4. Synthesis of N-(m-methyl) Phenyl Benzamide

For synthesis of N-(m-methyl)Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and m-Toluedine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S4: Synthesis of N-(o-methyl)Phenyl Benzamide.

- Molecular weight : 212 g/mol
- \blacktriangleright Molecular formula : C₁₄NOH₁₄
- Solubility : Soluble in Chloroform.
- ► FT-IR (v KBr) : 3240, 3030, 2829, 1651, 1603, 1526, 1440cm-1
- > 1H-NMR (400 MHz, CDCl3) : δ 7.722 (br s, 1H, -NH), 7.962-7.982 (m, 1H), 7.907-7.925 (m, 1H), 7.576-7.612 (t, 1H), 7.50-7.54 (m, 3H), 7.24-7.27 (m, 1H), 7.13 (m, 1H), 2.36 (s, 3H)
- > 13C-NMR (100 MHz, CDCl3) : δ 165.683 (1C, C=O), 135.789 (1C), 135.039 (1C), 131.885 (1C), 130.591 (1C), 129.244 (1C), 128.873-128.918 (2C), 127.074 (1C), 126.947 (1C), 125.399 (1C), 123.139 (1C), 17.860 (1C).

 \triangleright

5. Synthesis of N-Benzyl Benzamide

For synthesis of N-Benzyl Benzamide, N- Methyl Benzamide (1 mmol) and Benzylamine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S5: Synthesis of N-Benzyl Benzamide.

- ➢ Molecular weight : 212 g/mol
- \blacktriangleright Molecular formula : C₁₄NOH₁₃
- Solubility : Soluble in Chloroform.
- ► FT-IR (v KBr) : 3329, 3056, 2940, 1639, 1578, 1555, 1492 cm-1
- > 1H-NMR (400 MHz, CDCl3) : δ 9.270 (br s, 1H, -NH), 5.150 (s, 1H), 4.460 (s, 1H), 6.825-6.834 (m, 2H), 7.396-7.404 (m, 2H), 7.185-7.283 (m, 1H), 8.001-8.183 (m, 2H), 7.597-7.641 (m, 2H), 7.826-7.844 (m, 1H)

6. Catalyst Screening

Model reaction:

Entry Catalyst		% of Yields	
01	-	0	
02	SnO ₂	5	
03	Cu ₂ O	3	
04	Al ₂ O ₃	76	
05	Nb ₂ O ₅	8	
06	CeO ₂	10	
07	TiO ₂	6	

Table S1: Catalyst screening for model reaction

Figure S1: Catalyst screening for model reaction.

7. Solvent Screening

Entry	Entry Solvent % of	
01	No solvent	0
02	O-Xylene	9
03	Benzene	5
04	Triethylamine	76
05	Toluene	7

Table S2: Solvent screening for model reaction

Figure S2: Solvent screening for model reaction.

8. Reusability of Al_2O_3

Model Reaction:

Cycle Number	Catalyst	% of Yields
01	Al ₂ O ₃	76
02		70
03		63
04		41

Table S3: Reusability of Al₂O₃ for model reaction.

Figure S3: Reusability of Al₂O₃ for model reaction.

9. Optimize structure of Compounds 1-5

Table S4: Optimize Structure of Compounds 1-5

Compnd	Optimize ball and bond type Structure	Optimize tube Structure	Optimize Energy (Hartee)
1			-624.166
2			-663.353
3		X4444	-706.818
4			-663.355
5		the second secon	-663.351

10. DFT Calculation Data

Calculation Method	Basis Set	Compounds	Energy (Hartee)	Relative Energy
RB3LYP	6-311+G (D, P)	Amides	-440.380	0.000
RB3LYP	6-311+G (D, P)	Amines-1	-287.631	152.749
RB3LYP	6-311+G (D, P)	Catalyst Al ₂ O ₃	-710.733	-270.353
RB3LYP	6-311+G (D, P)	Solvent $N(C_2H_5)_3$	-174.528	265.853
RB3LYP	6-311+G (D, P)	TS1	-1438.224	-997.844
RB3LYP	6-311+G (D, P)	TS2	-1603.740	-1163.359
RB3LYP	6-311+G (D, P)	Product 1	-624.166	-191.786

Table S5: Using Catalyst Al₂O₃

Table S6: Using Catalyst Nb₂O₅

Calculation Method	Basis Set	Compounds	Energy (Hartee)	Relative Energy
RB3LYP	6-311+G (D, P)	Amides	-440.380	0.000
RB3LYP	6-311+G (D, P)	Amines-1	-287.631	152.749
RB3LYP	6-311+G (D, P)	Catalyst Nb ₂ O ₅	-7843.992	-7403.612
RB3LYP	6-311+G (D, P)	Solvent N(C ₂ H ₅) ₃	-174.528	265.853
RB3LYP	6-311+G (D, P)	TS1	-0.430672	439.950
RB3LYP	6-311+G (D, P)	TS2	-8852.090	-8411.710
RB3LYP	6-311+G (D, P)	Product 1	-624.166	-191.786

Total energy plot for compounds 1-5

Compound 3

50

Compound 5

Wave number

Figure S4: FT-IR spectrum of Compound 1

Figure S5: ¹H-NMR spectrum of compound 1

Figure S7: ¹³C-NMR spectrum of compound 1.

Figure S8: Extended ¹³C-NMR spectrum of compound 1.

Figure S9: GC-MS spectrum of compound 1.

Wave number

Figure S10: FT-IR spectrum of compound 2

S20

Figure S12: Extended ¹H-NMR spectrum of compound 2

Figure S13: ¹³C-NMR spectrum of compound 2.

Figure S14: Extended ¹³C-NMR spectrum of compound 2.

Figure S15: GC-MS spectrum of compound 2.

Wave number

Figure S17: ¹H-NMR spectrum of compound 3

Figure S18: Extended ¹H-NMR spectrum of compound 3

Figure S19: Extended ¹H-NMR spectrum of compound 3.

S29

Figure S21: Extended ¹³C-NMR spectrum of compound 3

Figure S22: GC-MS spectrum of compound 3

Wave number

Figure S23: FT-IR spectrum of compound 4.

Figure S24: ¹H-NMR spectrum of compound 4

Figure S25: Extended ¹H-NMR spectrum of compound 4

Figure S26: ¹³C-NMR spectrum of compound 4

Figure S27: Extended ¹³C-NMR spectrum of compound 4

5)

(

Figure S28: GC-MS spectrum of compound 4

Figure S29: FT-IT spectrum of compound 5