Electronic Supporting Information

Polyaniline/(Ta₂O₅-SnO₂) Hybrid Nanocomposite for Efficient Room Temperature CO Gas Sensing

Chethana Aranthady,^{a,b} Ganapati V. Shanbhag,^a Nalini G Sundaram ^{a,c*}

 ^a Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research, Devanahalli-562164, Bengaluru, India
^b Graduate Studies, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
^c Department of Chemistry, St. Josephs's Colleges (Autonomous), Bengaluru-560027, India

*Corresponding author: <u>nalini@poornaprajna.org</u>

Composition	Operating	% response	Response	Recovery
	temp. (°C)		time (s)	time (s)
TaSn:PANI(1:0.25)	RRTT	4.7	15	13
	50	4.2	15	12
	75	4.1	16	14
	100	2.3	13	15
	125	0.09	16	18
	150	No response	-	-
TaSn:PANI(1:0.50)	RRTT	5.2	14	13
	50	4.6	18	15
	75	4.2	15	14
	100	2.9	13	16
	125	1.5	14	15
	150	No response	-	-
TaSn:PANI(1:0.75)	R RTT	3.8	22	20
	50	3.5	23	22
	75	2.3	20	24
	100	1.8	22	21
	125	No response	-	-
	150	No response	-	-

Table S1: Dynamic range of sense (maximum and minimum CO gas response) for eachcomposition at different operating temperatures.

Figure S1: p-XRD patterns of a) PANI, b) TaSn:PANI (1:0.75), c) TaSn:PANI (1:0.25), d) (Ta₂O₅-SnO₂).

Figure S2: PL emission spectra of hybrid TaSn:PANI (1:0.50), PANI and (Ta₂O₅-SnO₂).

Figure S3: XPS survey spectra of hybrid TaSn:PANI (1:0.50) composite.

Figure S4: Gas sensing results of TaSn:PANI (1:0.25) nano composite for the detection of 10 ppm CO gas at a) RT °C, b) 50 °C, c) 75 °C.

Figure S5: Gas sensing results of TaSn:PANI (1:0.75) hybrid nanocomposite for the detection of 10 ppm CO gas at a) RT °C, b) 50 °C, c) 75 °C.

Figure S6: Sensor response with reference to concentration of CO.

Figure S7: Sensor stability studies for 3 sensors as a function of time with error calculation.