Supporting Information

Pd-Pd/PdO as Active Sites on the Intercalated Graphene Oxide

Modified by Aryl Diamino: Fabrication, Catalysis Property, Synergistic and Catalytic Mechanism

Zihan Li^a, Erran Song^a, Ruirui Ren^a, Wuduo Zhao^a, Tiesheng Li^{a*}, Minghua Liu^{b*}, Yangjie Wu^a

^a College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China

^b Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

Contents

1.	Figure captions	2
2.	Table lists	-5
3.	Additive	-9

1. Figure caption

Figure S1 XRD patterns of GO, GO@PPD and GO@PPD-Pd.

Figure S2 FT-IR spectra of GO, GO@PPD and GO@PPD-Pd.

Figure S3. Raman spectrum of GO, GO@PPD and GO@PPD-Pd.

Figure S4 SEM images: (a) GO, (b) GO@PPD, and (c) GO@PPD-Pd.

Figure S5 (a) N_2 adsorption-desorption isotherms, (b) the corresponding distribution of pore size for GO, GO@PPD and GO@PPD-Pd, respectively.

Figure S6 Electrochemical impedance spectra (EIS) of the catalyst on the Ni foam for GO, GO@PPD and GO@PPD-Pd.

Figure S7 Thermogravimetric analysis curves of GO, GO@PPD and GO@PPD-Pd.

Figure S8 (a)Thermogravimetric analysis curves of GO-PPD-Pd, GO@PPD-Pd1, GO@PPD-Pd2 and GO@Pd; (b) Amplified section from (a) in the range from 0 to 200 °C.

3. Table List

Pore volume (cm³g⁻¹) Pore diameter (nm) Catalyst S_{BET} (m²g⁻¹) GO 11.4524 7.7581 0.021552 GO@PPD 9.5936 12.8325 0.035923 GO@PPD-Pd 0.039389 11.3250 12.1393

Table S1. BET surface areas, pore diameter and pore volumes of the catalysts.

Table S2. Optimized	l conditions	in Suzuki cou	upling reaction b	v GO@PPD-Pd. ^a
---------------------	--------------	---------------	-------------------	---------------------------

Entry	Base	Solvent	Time (min)	T (℃)	Yield (%) ^b	TON ^e	TOF (h ⁻¹)
1	K ₂ CO ₃	H ₂ O	30	70	13	765	1530
2	K ₂ CO ₃	MeOH	30	70	53	3118	6236
3	K ₂ CO ₃	EtOH	30	70	91	5353	10706
4	K ₂ CO ₃	H ₂ O:EtOH(5:1)	30	70	62	3647	7294
5	K ₂ CO ₃	H ₂ O:EtOH(4:1)	30	70	67	3941	7882
6	K ₂ CO ₃	H ₂ O:EtOH(3:1)	30	70	76	4471	8942
7	K ₂ CO ₃	H ₂ O:EtOH(2:1)	30	70	89	5235	10470
8	K ₂ CO ₃	H ₂ O:EtOH(1:1)	30	70	99	5824	11648
9	K ₂ CO ₃	H ₂ O:EtOH(1:2)	30	70	92	5412	10824
10	K ₂ CO ₃	H ₂ O:EtOH(1:3)	30	70	83	4882	9764
11	Na ₂ CO ₃	H ₂ O:EtOH(1:1)	30	70	91	5353	10706
12	K ₃ PO ₄	H ₂ O:EtOH(1:1)	30	70	79	4647	9294
13	NaOH	H ₂ O:EtOH(1:1)	30	70	94	5530	11060
14	NaOAc	H ₂ O:EtOH(1:1)	30	70	92	5412	10824
15	NaHCO ₃	H ₂ O:EtOH(1:1)	30	70	85	5000	10000
16	K ₂ CO ₃	H ₂ O:EtOH(1:1)	30	60	98	5765	11530
17	K ₂ CO ₃	H ₂ O:EtOH(1:1)	30	50	94	5530	11060
18	K ₂ CO ₃	H ₂ O:EtOH(1:1)	30	40	86	5059	10118
19	K ₂ CO ₃	H ₂ O:EtOH(1:1)	30	30	76	4471	8942
20	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	60	97	5706	17118

21	K ₂ CO ₃	H ₂ O:EtOH(1:1)	10	60	90	5294	31764
22	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	60	91 ^c	10706	32118
23	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	60	86 ^d	20235	60705

^{*a*} Reaction condition: *p*-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), Base (0.5 mmol), **GO@PPD-Pd** (1 mg), solvent (4 mL). ^{*b*} isolated yield. ^{*c*} 4-bromotoluene (0.5 mmol), PhB(OH)₂ (0.6 mmol), K₂CO₃ (1 mmol). ^{*d*} *p*-bromotoluene (1 mmol), PhB(OH)₂ (1.2 mmol), K₂CO₃ (2 mmol). ^{*e*} 1 mg **GO@PPD-Pd** containing 0.0000425 mmol Pd.

Entry	Ar-X	Ar-B(OH) ₂	Product	Yield (%) ^b
1	∠ →-I	B(OH)2		>99
2	Н ₃ СО-С	B(OH)2	Н3СО-	>99
3	Br	B(OH)2		99
4	O ₂ N————————————————————————————————————	B(OH)2	O ₂ N-	99
5	o Br	B(OH)2		99
6	H ₃ CO-Br	B(OH)2	Н3СО-	99
7	H ₃ CO	B(OH)2	H ₃ CO	99
8	Br OCH ₃	B (OH) ₂		89
9	OHCBr	B(OH)2	онс	99
10	OHC Br	B(OH) 2	онс	94
11		B(OH)2	Сно	70
12	CI CI	В(ОН)2		trace
13	O ₂ N-Cl	B(OH)2	O ₂ N-	trace

Table S3. Screening substrates of aryl halides with different aryl-boronic acid.^a

14	H ₃ CO-Cl	B(OH)2	Н3СО-	trace
----	----------------------	--------	-------	-------

^{*a*} Reaction condition: 4-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), K₂CO₃ (0.5 mmol), **GO@PPD-Pd** (1 mg), solvent (50% aqueous alcohol 4 mL) at 60 $^{\circ}$ C for 20 min. ^{*b*} Isolated yield.

Table S4. Catalytic activity of GO@PPD-Pd, GO@PPD-Pd1, GO@PPD-Pd2 and GO@Pd for Suzuki-Miyaura reaction.^{*a*}

Catalyst	Base	Solvent	Pd loading (mmol·mg ⁻¹)	Yield (%) ^b	TON	TOF (h ⁻¹)
GO@PPD-Pd	K ₂ CO ₃	H ₂ O:EtOH(1:1)	4.25×10-5	97	5706	17118
GO@PPD-Pd1	K ₂ CO ₃	H ₂ O:EtOH(1:1)	1.15×10 ⁻⁵	85	18478	55434
GO@PPD-Pd2	K ₂ CO ₃	H ₂ O:EtOH(1:1)	1.41×10-4	99	1755	5265
GO@Pd	K ₂ CO ₃	H ₂ O:EtOH(1:1)	2.92×10 ⁻⁶	5	4281	12843

^{*a*} Reaction condition: 4-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), K₂CO₃ (0.5 mmol), catalyst 1 mg, solvent (50% aqueous alcohol 4 mL) at 60 $^{\circ}$ C for 20 min. ^{*b*} Isolated yield.

Entry	Catalyst	Pd loading (mmol)	Yield (%) ^b	TON	TOF (h ⁻¹)
1	GO	0	0°	0	0
2	PPD	0	0^d	0	0
3	GO@PPD	0	0^e	0	0
4	Li ₂ PdCl ₄	0.0000425	76 ^f	4471	13413
5	GO+Li ₂ PdCl ₄	0.0000425	64 ^g	3765	11295
6	PPD+Li ₂ PdCl ₄	0.0000425	trace ^h	-	-
7	GO@PPD+Li2PdCl4	0.0000425	38 ^{<i>i</i>}	2235	6705
8	GO@PPD-Pd	0.0000425	97 ^j	5706	17118
9	Si@PPD-Pd	0.00025	90^k	900	2700

Table S5. Influences of support, ligand and the designed functional catalysts on catalyticproperties. a

^{*a*} Reaction condition: 4-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), K₂CO₃ (0.5 mmol), solvent (50% aqueous alcohol 4 mL) at 60 °C for 20 min. ^{*b*} Isolated yield. ^{*c*} GO 1 mg, ^{*d*} PPD 1 mg, ^{*e*} GO@PPD 1 mg, ^{*f*} Li₂PdCl₄ 0.0000425 mmol, ^{*s*} GO 1 mg and Li₂PdCl₄ 0.0000425 mmol, ^{*h*} PPD 1 mg and Li₂PdCl₄ 0.0000425 mmol, ^{*i*} GO@PPD 1 mg and Li₂PdCl₄ 0.0000425 mmol, ^{*j*} GO@PPD 1 mg containing 0.0000425 mmol Pd, ^{*k*} Si@PPD-Pd 1 mg containing 0.00025 mmol Pd.

Entry	Ligand	Pd loading (mmol·mg ⁻¹)	yield (%)	TON	TOF(h ⁻ 1)
1	p-phenylenediamine	4.25×10 ⁻⁵	97	5706	17118
2	<i>m</i> -phenylenediamine	1.57×10 ⁻⁴	96	1529	4587
3	o-phenylenediamine	1.12×10 ⁻⁵	95	21205	63615
4	p-aminotoluene	6.51×10 ⁻⁵	98	3764	11292
5	p-nitroaniline	1.74×10-4	96	1379	4137
6	phenylamine	8.15×10 ⁻⁵	97	2976	8928
7	1,3-diaminopropane	8.57×10 ⁻⁵	84	2451	7353
8	1,6-diaminohexane	6.04×10 ⁻⁵	75	3104	9312

Table 6. Influences of catalysts prepared with different ligands used to modified GO on catalytic performance.

^{*a*} Reaction condition: 4-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), K₂CO₃ (0.5 mmol), catalyst 1 mg, solvent (50% aqueous alcohol 4 mL) at 60 °C for 20 min.

Entry	Catalyst	Reaction conditions	X	Yield (%)	TOF (h ⁻¹)	Ref
1	GO@PPD-Pd	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 20 min, 60 ℃	4-bromotoluene	97	17118	This work
2	ASNTs@Pd	K ₂ CO ₃ , EtOH, 30 min, 80 $^\circ\!\!\!C$	Bromobenzene	99	3444	24
3	Pd/PRGO	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 5 min, 120 ℃	Bromobenzene	100	23000	54
4	F-GO-Pd	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 20 min, 70 °C	Bromobenzene	97	21008	78
5	Pd@APGO	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 6 h, 80 ℃	Iodobenzene	96	68	55
6	Pd@GOF	$\rm K_2CO_3,$ Toluene, 6 h, 80 $^\circ \rm C$	Bromobenzene	>99	8	63
7	Pd/RGO-0.025 PPD	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 15min, rt (K ₂ CO ₃ , H ₂ O:EtOH (1:1), 2min, under MWI at 80 °C)	Bromobenzene	95 (96.7)	1740 (96,700)	52

 Table S7. Comparison of the similar Pd catalysts reported.

8	DNA-G-Pd (1.1 mol %)	K ₃ PO ₄ , H ₂ O, SDS, 4min, 100 °C	Iodobrnzene	100	1363	56
9	GO-NH ₂ -Pd ²⁺ (1.0 mol %)	K ₂ CO ₃ ,EtOH/H ₂ O(2:1), 4 h, 60 ℃	Bromobenzene	73	1825	20

Table S8. Poisoning experiments of GO@PPD-Pd catalyst. ^a						
Entry	Poisoning additive	Yield $(\%)^d$				
1	-	97				
2	2,2'-Dipyridyl	5^b				
3	Thiophene	31 ^c				

^{*a*} Reaction condition: 4-bromotoluene (0.25 mmol), PhB(OH)₂ (0.3 mmol), K₂CO₃ (0.5 mmol), **GO@PPD-Pd** 1 mg, solvent (4 mL) at 60 $^{\circ}$ C for 20 min. ^{*b*} 0.5 equiv of 2,2'-Dipyridyl (per metal atom). ^{*c*} 0.5 equiv of Thiophene (per metal atom). ^{*d*} Isolated yield.

Additive: Characterization of coupling compounds in Suzuki

coupling reaction

Entry 1: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dt, J = 8.2, 1.8 Hz, 4H), 7.43 – 7.34 (m, 4H), 7.33 – 7.25 (m, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 128.9, 127.4, 127.3.

Entry 2. ¹H NMR (400MHz, DMSO, δ ppm): 7.47-7.45(m, 2H), 7.41-7.38(m, 2H), 7.30-7.36(m,

2H), 7.26-7.29(dd, J2=1.8 Hz, J1=7.52 Hz,1H), 7.11-7.09(d,J=8.28 Hz, 1H), 7.02(m, 1H), 3.75(s, 3H).; ¹³C NMR (101 MHz, CDCl₃, δ ppm) :159.28, 140.94, 133.82, 128.84, 128.25, 126.81 (d, *J* = 7.1 Hz), 114.31, 55.43.

Entry 3: ¹H NMR(400MHz, DMSO, δ ppm): 7.59-757(d, J=7.64 Hz,4H), 7.44-7.40(t, J=7.52, 4H), 7.34-7.31(t, J=6.92 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 128.9, 127.4, 127.3.

Entry 4. 1H NMR (400 MHz, CDCl3, δ ppm): 7.41 – 7.55 (m, 3H),7.63 (d, J = 6.8 Hz, 2H),7.74 (d, J = 8.8 Hz, 2H),8.30 (d, J = 8.8 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃, δ ppm): 147.44 (1C), 146.89 (1C), 138.58 (1C), 128.97 (2C), 128.73 (1C), 127.61 (2C), 127.20 (2C), 123.92 (2C).

Entry 6: ¹H NMR (400 MHz, CDCl₃, δ ppm) :7.61 – 7.47 (m, 4H), 7.39 (dd, J = 8.5, 6.9 Hz, 2H), 7.32 – 7.24 (m, 1H), 7.00 – 6.92 (m, 2H), 3.81 (s, 3H).;¹³C NMR (101 MHz, CDCl₃, δ ppm) :159.25, 140.92, 133.86, 128.83, 128.25, 126.80, 114.31, 55.42.

Entry 7: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.2, 1.3 Hz, 2H), 7.39 (dd, *J* = 8.3, 6.7 Hz, 2H), 7.34 – 7.26 (m, 2H), 7.20 – 7.13 (m, 1H), 7.12 – 7.10 (m, 1H), 6.86 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 3.79 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 142.9, 141.2, 129.9, 128.9, 127.6, 127.3, 119.8, 113.0, 112.8, 55.3.

Entry 8: ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 2H), 7.43 – 7.34 (m, 2H), 7.30 (td, J = 7.5, 1.6 Hz, 3H), 7.06 – 6.93 (m, 2H), 3.78 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 138.6, 131.0, 130.8, 129.6, 128.7, 128.1, 127.0, 120.9, 111.3, 55.6.

Entry 9: ¹H NMR (400 MHz, CDCl₃, δ ppm): 10.04 (s, 1H), 7.93 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.1 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H).;¹³C NMR (101 MHz, CDCl₃, δ ppm): 191.96, 147.20, 139.72, 135.22, 130.30, 129.05, 128.51, 127.70, 127.39.

Entry 10: ¹H NMR (400 MHz, CDCl₃, δ ppm) : 10.09 (s, 1H), 8.11 (dt, *J* = 1.8 Hz, 1H), 7.86 (dd, *J* = 7.7, 1.8 Hz, 2H), 7.67 (m, 2H), 7.60 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.44 – 7.38 (m, 1H).;¹³C NMR (101 MHz, CDCl3, δ ppm) :192.42, 142.26, 139.79, 137.03, 133.16, 129.60, 129.11, 128.73, 128.30, 128.12, 127.25.

Entry 11: ¹H NMR (400 MHz, CDCl₃) δ 9.97 (d, *J* = 0.7 Hz, 1H), 8.02 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.51 – 7.41 (m, 5H), 7.38 – 7.34 (m, 2H).;¹³C NMR (101 MHz, CDCl₃, δ ppm): 192.42, 145.98, 137.77, 133.74, 133.59, 130.81, 130.13, 128.46, 128.15, 127.81, 127.59.

Reference

(1) M.L.N. Rao et al. A new palladium catalyzed protocol for atom-efficient cross-coupling reactions of triarylbismuths with aryl halides and triflates. Tetrahedron. 2008; 64: 5762–5772.

(2) Rai RK, Gupta K, Behrens S, Li J, Xu Q, Singh Sanjay K. Highly Active Bimetallic Nickel– Palladium Alloy Nanoparticle Catalyzed Suzuki–Miyaura Reactions. ChemCatChem. 2015;7: 1806 – 1812.

(3) Doustkhah E, Rostamnia S, Imura M. Thiourea bridged periodic mesoporous organosilica with ultra-small Pd nanoparticles for coupling reactions. RSC Adv. 2017; 7: 56306–56310.

(4) Lü B, Fu CL, Ma SM. Application of a readily available and air stable monophosphine HBF4 salt for the Suzuki coupling reaction of aryl or 1-alkenyl chlorides. Tetrahedron Lett. 2010; 51: 1284–1286.

(5) Bao GG, Bai J, Li CP. Synergistic effect of the Pd–Ni bimetal/carbon nanofiber composite catalyst in Suzuki coupling reaction. Org. Chem. Front. 2019; 6: 352–361.

(6)Mino T, Shirae Y, Sakomoto M, Fujita T. Phosphine-Free Hydrazone-Pd Complex as the Catalyst Precursor for a Suzuki-Miyaura Reaction under Mild Aerobic Conditions. J. Org. Chem. 2005, 70, 2191-2194.

(7) Bandini M, Pietrangelo A, Sinisi R, Ronchi AU, Wolf MO. New Electrochemically Generated Polymeric Pd Complexes as Heterogeneous Catalysts for Suzuki Cross-Coupling Reactions. Eur. J.

Org. Chem. 2009; 3554–3561.