This ESI replaces the version published on 16th May 2022 due to some errors, the scientific

content remains unchanged.

Cisplatin and Oleanolic acid Co-loaded pH-Sensitive CaCO₃ Nanoparticles for Synergistic

Chemotherapy

Muhammad Waseem Khan^{a,*}, Chenming Zou^c, Said Hassan^c, Fakhar Ud Din^d, Mahaman Yacoubou Abdoul Razak^e, Asif Nawaz^f, Alam zeb^g, Abdul Wahab^h, Sudhair Abbas Bangashⁱ.

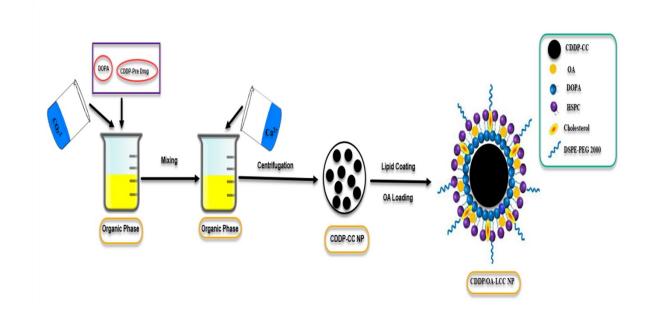
^aInstitute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan. ^bSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

^cInstitute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan. ^dDepartment of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan.

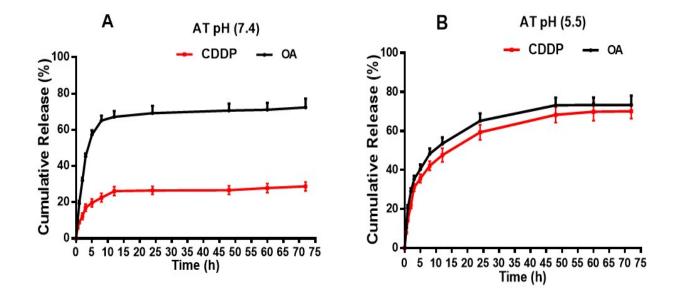
^eDepartment of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

^fFaculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan

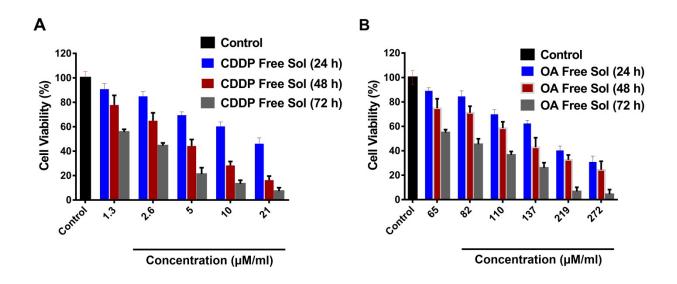
^gRiphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.


^hDepartment of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan.

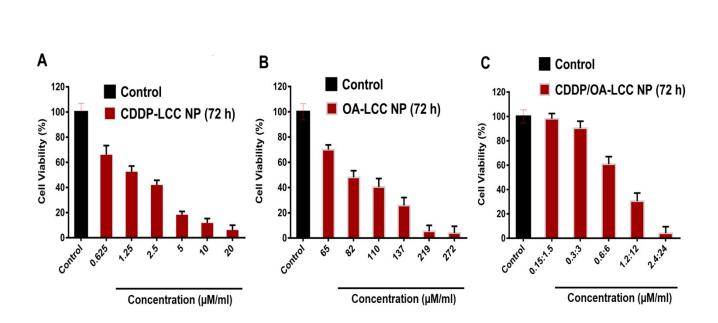
ⁱFaculty of Life Science, Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan.


* Corresponding author.

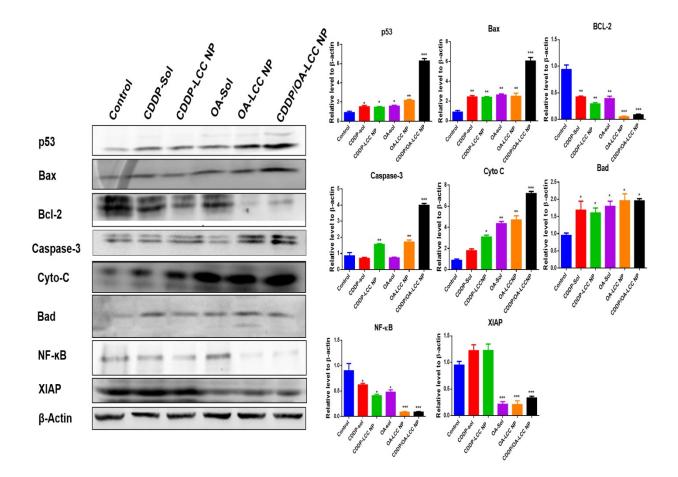
Postal addresses: Institute of Pharmaceutical Sciences, Khyber Medical University, Phase 5, Hayatabad, Peshawar, KP, Pakistan.
E-mail addresses: khanwaseem6065@gmail.com
Tel.: +92-3459146065


Supplementary Information

Supplementary Fig. S1. Schematic illustration of the formulation of lipid coated cisplatin/oleanolic acid co-loaded calcium carbonate nanoparticles (CDDP/OA-LCC NPs).¹



Supplementary Fig. S2. In vitro drug release profiles of CDDP and OA from the CDDP/OA-LCC NPs in PBS (72 h). (A) At pH 5.5; (B) At pH 7.4.¹



Supplementary Fig. S3. Cytotoxicity assay of free CDDP and free OA against HepG2 cells.

1

Supplementary Fig. S4. Cytotoxicity assay of the nanoparticles against HepG2 cells (72 h). (A) CDDP-LCC NPs MTT assay; (B) OA-LCC NPs MTT assay; (C) CDDP/OA-LCC NPs MTT assay with fixed ratios. Data presented as mean \pm SD, n=5.¹

Supplementary Fig. S5. Western blot analysis of protein levels (p53, Bax, Bad, Cyto-C, caspase-3, NF-κB, Bcl-2 and XIAP) after treating HepG2 cells with CDDP-Sol, CDDP-LCC NP,

OA-Sol, OA-LCC NP, CDDP/OA-LCC NP *in vitro*. β -actin was used as a loading control. Quantification of protein level using Image J. Data presented as mean \pm S.D. (n=3).¹

Reference

M. W. Khan, P. Zhao, A. Khan, F. Raza, S. M. Raza, M. Sarfraz, Y. Chen, M. Li, T. Yang and X. Ma, *Int. J. Nanomed.*, 2019, 14, 3753-3771