Supporting Information

Steered Polymorphic Nanodomains in TiO₂ to Boost Visible-Light Photocatalytic Oxidation

Zeju Zhang¹[†], Mang Niu¹[†], Wei Li¹, Chenfeng Ding^{2, 5*}, Peitao Xie¹, Yongxin Li¹, Lili Chen¹, Xiaopeng Lan¹, Chunlei Liu¹, Xiaodong Yan³, Xuewei Fu⁴, Yaochun Liu⁵, Yuan Liu^{1,5*}, Dapeng Cao⁶, Jingjie Dai⁷, Xiaofen Hong⁸, Chunzhao Liu^{1*}

¹ State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

² Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha Kunigami-gun, Onna-son, Okinawa 904-0495, Japan

³ Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

⁴ College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China

⁵ Foshan (Southern China) Institute for New Materials, Foshan 528200, China

⁶ Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

⁷School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, Shandong, China.

⁸ Zhejiang Rich Environmental Protection Technology Co., Ltd., Hangzhou 310000, China.

[†] These authors contributed equally.

Figure S1. The simulated absorption structure of (a) NH_2 -Ti and (b) S-Ti sites. (c) The comparison of absorption energy between NH_2 -Ti and S-Ti sites.

Figure S2. (a) SEM image of C_3N_4 -induced TiO₂ nanofibers. (b) Schematic mechanism of enhanced light harvesting of C_3N_4 -induced TiO₂ nanofibers.

Figure S3. (a)-(c) SEM images of C_3N_4 -induced TiO₂ nanofibers with introduction various amount of thiourea into precursor. (d) Diameter distribution of nanofibers with increasing thiourea in precursor.

Figure S4. (a) Optical image and (b) tap densities of TiO_2 -P25, TiO_2 NF, C_3N_4/TiO_2 , C_3N_4 -induced TiO_2 .

Figure S5. (a) Nitrogen adsorption/desorption curves and (b) pore size distribution of C_3N_4/TiO_2 and C_3N_4 -induced TiO₂.

Figure S6. The relative intensity ratio of TiO_2 (004) peak to TiO_2 (200) peak according to the XRD patterns.

Figure S7. (a) TEM image and (b) HR-TEM image of TiO_2 nanofiber.

Figure S8. Gaussian fitted XPS curves of oxygen atoms in C_3N_4/TiO_2 .

Figure S9. Gaussian fitted XPS curves of carbon atoms in (a) C_3N_4/TiO_2 and (b) C_3N_4 -induced TiO₂.

Figure S10. Contacting angle of water on the surface of (a) TiO_2 and (b) C_3N_4 -induced TiO_2 .

Figure S11. Standard curve of absorbance as a function of 2, 4-DCP concentration.

Figure S12. Standard curve of absorbance as a function of Rh-b concentration.

Figure S13. Photocatalytic degradation curves at (a) 25 and (b) 5 °C, and kinetic curves at (c) 25 and (d) 5 °C of TiO₂, C_3N_4 /TiO₂ and C_3N_4 -induced TiO₂ on Rh-b.

Figure S14. Photocatalytic degradation rate of TiO_2 , C_3N_4/TiO_2 and C_3N_4 -induced TiO_2 under different PH values.

Figure S15. Standard curves of absorbance as a function of CR and MB concentration.

Figure S16. Photocatalytic degradation of (a) CR and (b) MB.

Figure S17. Photocatalytic degradation efficiency with the introduction of TBA (·OH), AgNO₃ (e⁻) and BQ (O_2^{-}) as scavengers during the degradation of Rh-b.

After cyclic degradation under visible light

Figure S18. (a) SEM image and (b) magnified image of C_3N_4 -induced TiO₂ after cyclic degradation under visible light.

Table S1. Comparison of average crystallite size of TiO_2 in C_3N_4 -induced TiO_2 as compared with other counterparts.

Sample	Phase	Average crystallite size (nm)
TiO ₂	Anatase	12.1
C ₃ N ₄ /TiO ₂	Anatase	18.9
C ₃ N ₄ -induced TiO ₂	Anatase	9.5