Controlled synthesis of trimetallic nitrogen-incorporated CoNiFe layered double hydroxide electrocatalysts for boosting oxygen evolution reaction

Anh Thi Nguyet Nguyen, Minji Kim, and Jun Ho Shim*

Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan 38453,

Republic of Korea

*E-mail: junhoshim@daegu.ac.kr

Figure S1. SEM images of monometallic (a) N-Co, (b) N-Ni, and (c) N-Fe.

Figure S2. Comparison of XRD patterns; (a) N-Co, N-Fe, N-CoFe; (b) N-Co, N-Ni, N-CoNi; and (c) N-Ni, N-Fe, N-NiFe.

Figure S3. SEM-EDS analysis of (a) N-CoNiFe LDH and (b) CoNiFe.

Figure S4. XPS survey scan of N-CoNiFe LDH catalyst.

Figure S5. LSV curves in O_2 -saturated 1.0 M KOH at a scan rate of 10 mV s⁻¹ (rotational speed of 1600 rpm) of N-CoNiFe catalysts at various conditions: different (a) EA and (b) metal precursors (Co²⁺, Ni²⁺, and Fe³⁺) concentrations.

Figure S6. CV curves of (a) N-NiFe, (b) N-CoNi, (c) N-CoFe, (d) CoNiFe, (e) N-CoNiFe, and (f)

Ir/C in 1.0 M KOH solution at different scan rates.

Figure S7. (a) BET surface areas and (b) pore-size distributions of an isothermal plot with N_2 adsorption/desorption.

Figure S8. SEM images of N-CoNiFe LDH (a) before and (b) after stability test. (c) SEM-EDS analysis of N-CoNiFe LDH after stability test.

Electrode	Synthesis method	Overpotential @ 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
N-CoNiFe LDH/GC	reflux method	318 mV	72.2	This work
FeCoNi- S@ZIF/GC	hydrothermal synthesis of ZIF-67	420 mV	NR	Mater. Today Energy, 2020, 16 , 100405.
P-CoNiFe/GC	solvothermal process	279 mV	62.9	<i>Electrochim.</i> <i>Acta</i> , 2019, 318 , 883-891.
CoNiFe LDH/stainless steel	electrodeposition	196 mV	49	J. Alloys Compd., 2021, 863 , 158081.
CoNiFe LDH/GC	dealloying process	240.4 mV	38.6	ACS Sustainable Chem. Eng., 2018, 6 , 16096- 16104.
CoNiFe LTHs/GC	MOF-mediated method	262 mV	88.1	J. Colloid Interface Sci., 2021, 602 , 612- 618.
CoNiFe- OH/nickel foam	electric-field assisted alkaline hydrolysis- oxidation strategy	207 mV	52.1	<i>Small</i> , 2022, 18 , 2104863.
CoNiFeO _x - NC/carbon paper	ion-exchange based strategy	265 mV (@ 50 mA cm ⁻²)	64.1	<i>Appl. Catal. B-</i> <i>Environ.</i> , 2021, 287 , 119953.
CoNiFe- LDH/GC	chemical and structural transformations of a starting solid precursor α- Co(OH) ₂	291	59	ACS Appl. Energy Mater., 2018, 1 , 4998- 5007.
2CoNiFe LDH/nickel foam	electrodeposition	224	41	<i>Energy Technol.</i> , 2021, 9 , 2100688.

Table S1. Comparison of the OER catalytic performance for various CoNiFe-based catalysts in

alkaline medium.