Supporting Information:

Revealing the different performance of Li₄SiO₄ and Ca₂SiO₄ for CO₂

adsorption by density functional theory

Wenjing Yu^a, Qian Xu^{*a}, Shenggang Li^{*b}, Xiaolu Xiong^a, Hongwei Cheng^a, Xingli Zou^a and

Xionggang Lu^a

a The State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, P. R. China

b CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P. R. China

Corresponding author. E-mail: <u>qianxu@shu.edu.cn</u> (Qian Xu); <u>lisg@sari.ac.cn</u> (S. Li)

Atom	Mulliken	Atom	Mulliken	Atom	Mulliken	Atom	Mulliken
	charge	710111	charge	7 ttom	charge	7 ttom	charge
Li1	0.84	Li15	0.86	Li29	0.84	Li43	0.84
Li2	0.84	Li16	0.88	Li30	0.84	Li44	0.80
Li3	0.84	Li17	0.87	Li31	0.84	Li45	0.79
Li4	0.84	Li18	0.85	Li32	0.87	Li46	0.80
Li5	0.87	Li19	0.84	Li33	0.86	Li47	0.85
Li6	0.86	Li20	0.84	Li34	0.88	Li48	0.84
Li7	0.88	Li21	0.84	Li35	0.87	Li49	0.86
Li8	0.87	Li22	0.84	Li36	0.85	Li50	0.88
Li9	0.85	Li23	0.87	Li37	0.85	Li51	0.84
Li10	0.84	Li24	0.86	Li38	0.84	Li52	0.83
Li11	0.84	Li25	0.88	Li39	0.86	Li53	0.84
Li12	0.84	Li26	0.87	Li40	0.88	Li54	0.80
Li13	0.84	Li27	0.85	Li41	0.84	Li55	0.79
Li14	0.87	Li28	0.84	Li42	0.83	Li56	0.80

Table S1 Mulliken charge analysis of Li atoms in Li₄SiO₄.

Table S2 Mulliken charge analysis of O atoms in Li₄SiO₄.

Atom	Mulliken	Atom	Mulliken	Atom	Mulliken	Atom	Mulliken
Atom	charge	Atom	charge	Atom	charge		charge
01	-1.27	015	-1.27	O29	-1.29	O43	-1.29
O2	-1.27	O16	-1.27	O30	-1.25	O44	-1.25
O3	-1.28	O17	-1.28	O31	-1.29	O45	-1.29
O4	-1.27	O18	-1.27	O32	-1.29	O46	-1.29
05	-1.26	O19	-1.26	O33	-1.26	O47	-1.26

O6	-1.27	O20	-1.27	O34	-1.24	O48	-1.24
07	-1.29	O21	-1.29	O35	-1.27	O49	-1.27
08	-1.27	O22	-1.27	O36	-1.28	O50	-1.28
09	-1.27	O23	-1.27	O37	-1.28	O51	-1.28
O10	-1.28	O24	-1.28	O38	-1.27	052	-1.27
O11	-1.27	O25	-1.27	O39	-1.29	O53	-1.29
012	-1.26	O26	-1.26	O40	-1.27	O54	-1.27
013	-1.27	O27	-1.27	O41	-1.28	055	-1.28
O14	-1.29	O28	-1.29	O42	-1.28	O56	-1.28

Table S3 Mulliken charge analysis of Ca and O atoms in Ca₂SiO₄.

Atom	Mulliken	Atom	Mulliken		Mulliken	Atom	Mulliken
Atom	charge	Atom	charge	Atom	charge	Atom	charge
Cal	1.27	Ca7	1.27	05	-1.09	011	-1.10
Ca2	1.26	Ca8	1.26	O6	-1.10	O12	-1.10
Ca3	1.27	01	-1.09	07	-1.10	O13	-1.09
Ca4	1.26	O2	-1.10	08	-1.10	O14	-1.10
Ca5	1.27	O3	-1.10	09	-1.09	015	-1.10
Ca6	1.26	04	-1.10	O10	-1.10	O16	-1.10

Considering that the adsorption energy of adsorbed CO_2 in bent configuration is the lowest, the vibration frequencies were only calculated for this configuration, as displayed in Table S4. The vibrational frequencies of CO_2 adsorbed on Li_4SiO_4 (010) and Ca_2SiO_4 (100) surfaces shifted significantly from those of isolated CO_2 molecule. Fig.S1 shows the corresponding vibrational model of adsorbed CO_2 .

Table S4 Vibrational frequencies (cm⁻¹) of isolated and adsorbed CO_2 in bent configuration.

bit S4 violational nequencies (cm) of isolated and adsorbed CO ₂ in bent configuration.						
Configuration	Asymmetric stretch	Symmetric stretch	Bending vibration	C-O _S		
Isolated CO ₂	2365	1334	646			
adsorbed CO ₂ on	1568	1254	764	1006		
Li ₄ SiO ₄ (010)	1508	1234	/04	1000		
adsorbed CO ₂ on	1670	1221	738	827		
$Ca_{2}SiO_{4}(100)$	1079	1221	738	027		

Fig. S1. Vibrational modes of adsorbed CO_2 molecule: (a1) asymmetric stretching, (a2) symmetric stretching on Li₄SiO₄ (010) surface and (b1) asymmetric stretching, (b2) symmetric stretching on Ca₂SiO₄ (100) surface.

A town -	Fractional coordinates				
Atom -	u	V	W		
Lil	0.382673	0.002866	0.408360		
Li2	0.811847	0.002090	0.545327		
Li3	0.663326	0.006108	0.826900		
Li4	0.522364	1.004921	0.117369		
Li5	0.191649	0.969313	0.014491		
Li6	0.333241	0.964591	0.732463		
Li7	0.949715	0.031048	0.707157		
Li8	0.079250	0.014688	0.866891		
Li9	0.237800	0.038150	0.597954		
Li10	-0.382670	0.502866	-0.408360		
Li11	-0.811850	0.502090	-0.545330		
Li12	-0.663330	0.506108	-0.826900		
Li13	-0.522360	1.504921	-0.117370		
Li14	-0.191650	1.469313	-0.014490		
Li15	-0.333240	1.464591	-0.732460		
Li16	-0.949720	0.531048	-0.707160		
Li17	-0.079250	0.514688	-0.866890		
Li18	-0.237800	0.538150	-0.597950		
Li19	-0.382670	-0.002870	-0.408360		
Li20	-0.811850	-0.002090	-0.545330		
Li21	-0.663330	-0.006110	-0.826900		

Table S5 The fractional coordinates of atoms in Li₄SiO₄.

Li22	-0.522360	-1.004920	-0.117370
Li23	-0.191650	-0.969310	-0.014490
Li24	-0.333240	-0.964590	-0.732460
Li25	-0.949720	-0.031050	-0.707160
Li26	-0.079250	-0.014690	-0.866890
Li27	-0.237800	-0.038150	-0.597950
Li28	0.382673	0.497134	0.408360
Li29	0.811847	0.497910	0.545327
Li30	0.663326	0.493892	0.826900
Li31	0.522364	-0.504920	0.117369
Li32	0.191649	-0.469310	0.014491
Li33	0.333241	-0.464590	0.732463
Li34	0.949715	0.468952	0.707157
Li35	0.079250	0.485312	0.866891
Li36	0.237800	0.461850	0.597954
Li37	0.273809	0.250000	0.859186
Li38	0.418333	0.250000	0.548899
Li39	0.127996	0.250000	0.145984
Li40	0.971183	0.250000	0.428925
Li41	0.452137	0.250000	0.276875
Li42	0.728182	0.250000	0.695152
Li43	0.589839	0.250000	0.983003
Li44	0.141723	0.250000	0.731525
Li45	0.006133	0.250000	0.010710
Li46	0.878098	0.250000	0.286783
Li47	-0.273810	0.750000	-0.859190
Li48	-0.418330	0.750000	-0.548900
Li49	-0.128000	0.750000	-0.145980
Li50	-0.971180	0.750000	-0.428930
Li51	-0.452140	0.750000	-0.276880
Li52	-0.728180	0.750000	-0.695150
Li53	-0.589840	0.750000	-0.983000
Li54	-0.141720	0.750000	-0.731530
Li55	-0.006130	0.750000	-0.010710
Li56	-0.878100	0.750000	-0.286780
01	0.356709	0.024866	0.060465
O2	0.785475	0.030107	0.196306
03	0.498121	0.026844	0.770084
04	0.216536	0.023722	0.346294
05	0.068813	0.030602	0.637933
06	0.927391	0.030932	0.916095
07	0.654005	0.026732	0.481683
08	-0.356710	0.524866	-0.060470
09	-0.785480	0.530107	-0.196310

O10	-0.498120	0.526844	-0.770080
011	-0.216540	0.523722	-0.346290
012	-0.068810	0.530602	-0.637930
013	-0.927390	0.530932	-0.916100
014	-0.654010	0.526732	-0.481680
015	-0.356710	-0.024870	-0.060470
016	-0.785480	-0.030110	-0.196310
O17	-0.498120	-0.026840	-0.770080
O18	-0.216540	-0.023720	-0.346290
019	-0.068810	-0.030600	-0.637930
O20	-0.927390	-0.030930	-0.916100
O21	-0.654010	-0.026730	-0.481680
O22	0.356709	0.475134	0.060465
O23	0.785475	0.469893	0.196306
O24	0.498121	0.473156	0.770084
O25	0.216536	0.476278	0.346294
O26	0.068813	0.469398	0.637933
O27	0.927391	0.469068	0.916095
O28	0.654005	0.473268	0.481683
O29	0.198009	0.250000	0.959462
O30	0.614786	0.250000	0.097918
O31	0.331704	0.250000	0.676042
O32	0.059475	0.250000	0.245620
O33	0.906508	0.250000	0.528084
O34	0.760242	0.250000	0.811563
O35	0.474002	0.250000	0.394183
O36	0.420824	0.250000	0.933138
O37	0.844772	0.250000	0.070550
O38	0.555612	0.250000	0.640212
O39	0.281305	0.250000	0.220026
O40	0.132789	0.250000	0.513400
O41	0.992621	0.250000	0.792628
O42	0.695697	0.250000	0.352749
O43	-0.198010	0.750000	-0.959460
O44	-0.614790	0.750000	-0.097920
O45	-0.331700	0.750000	-0.676040
O46	-0.059480	0.750000	-0.245620
O47	-0.906510	0.750000	-0.528080
O48	-0.760240	0.750000	-0.811560
O49	-0.474000	0.750000	-0.394180
O50	-0.420820	0.750000	-0.933140
O51	-0.844770	0.750000	-0.070550
O52	-0.555610	0.750000	-0.640210
O53	-0.281310	0.750000	-0.220030

O54	-0.132790	0.750000	-0.51340
O55	-0.992620	0.750000	-0.792630
O56	-0.695700	0.750000	-0.352750
Si1	0.340420	0.250000	0.005836
Si2	0.751724	0.250000	0.137589
Si3	0.476914	0.250000	0.713706
Si4	0.200632	0.250000	0.292318
Si5	0.039110	0.250000	0.578038
Si6	0.894808	0.250000	0.856011
Si7	0.614530	0.250000	0.428549
Si8	-0.340420	0.750000	-0.005840
Si9	-0.751720	0.750000	-0.137590
Si10	-0.476910	0.750000	-0.713710
Si11	-0.200630	0.750000	-0.292320
Si12	-0.039110	0.750000	-0.578040
Si13	-0.894810	0.750000	-0.856010
Si14	-0.614530	0.750000	-0.428550

 Table S6 The fractional coordinates of atoms in Ca₂SiO₄.

Atom	Fractional coordinates				
Atom	u	V	W		
Ca1	0.228483	0.339181	0.429580		
Ca2	0.224207	-0.003760	0.703924		
Ca3	0.271517	0.839181	0.070420		
Ca4	0.275793	0.496241	-0.203920		
Ca5	-0.228480	-0.339180	-0.429580		
Ca6	-0.224210	0.003759	-0.703920		
Ca7	0.728483	0.160819	0.929580		
Ca8	0.724207	0.503759	1.203924		
01	0.219663	0.011419	0.444317		
O2	0.014682	0.667842	0.364502		
O3	0.475601	0.750073	0.305485		
O4	0.350156	0.670661	0.572730		
O5	0.280337	0.511419	0.055683		
O6	0.485318	1.167842	0.135498		
07	0.024399	1.250073	0.194515		
08	0.149844	1.170661	-0.072730		
O 9	-0.219660	-0.011420	-0.444317		
O10	-0.014680	-0.667840	-0.364502		
O11	-0.475600	-0.750070	-0.305485		
O12	-0.350160	-0.670660	-0.572730		
O13	0.719663	0.488581	0.944317		
O14	0.514682	-0.167840	0.864502		
015	0.975601	-0.250070	0.805485		

O16	0.850156	-0.170660	1.072730
Si1	0.267837	0.780610	0.419122
Si2	0.232163	1.280610	0.080878
Si3	-0.267840	-0.780610	-0.419120
Si4	0.767837	-0.280610	0.919122