Mechanistic insights into the chemistry of compound I formation in heme peroxidases: Quantum Chemical investigations of cytochrome c peroxidase

SUPPLEMENTARY INFORMATION:

Figure S1: Cluster structures of Cpd I complexes, with selected distances between heavy atoms (Å), for three different spin states: doublet (black), quartet (blue) and sextet (red); geometries optimized with a) UB3LYP-D3BJ/6-31G(d,p) and b) UB3LYP-D3BJ/6-31+G(d,p).

Compound I – dry model

PDB ID: 3M2I

Figure S2: Cluster structures of Cpd I complexes, with selected distances between heavy atoms (Å), for a) three different spin states: doublet (black), quartet (blue) and sextet (red); b) the heme pocket of crystalized ferryl-intermediate Ccp1.

Table S1: Gibbs Free-energy (kcal/mol) for both the wet and dry mechanisms of Cpd I formation for three different spin states: Free energies are estimated with B3LYP-GD3BJ/6-311+G(2d,2p)+ Δ G with ϵ =4.

	w	et-mechanis	m	Dry-Mechanism				
	Doublet	Quartet	Sextet	Doublet	Quartet	Sextet		
RC	0.0	0.0	0.0	0.0	0.0	0.0		
TS1	1.0	16.6	2.1	3.0	0.7	0.0		
IC1	8.5	18.3	6.8	-5.8	0.7	1.0		
IC2	1.4	18.6	9.0	-2.8	14.6	2.8		
TS2	11.8	25.0	10.5	7.6	31.1	25.6		
РС	-18.5	-17.8	-9.7	-28.4	-21.9	-14.8		

	w	et-mechanis	m	Dry-Mechanism				
	Doublet	Quartet	Sextet	Doublet	Quartet	Sextet		
RC	0.0	0.0	0.0	0.0	0.0	0.0		
TS1	1.8	19.5	4.1	3.9	1.1	1.0		
IC1	5.4	13.4	-2.0	-1.7	1.0	0.2		
IC2	-4.4	11.9	-2.5	-8.7	11.6	0.7		
TS2	8.4	20.4	42.7	7.7	30.6	27.4		
РС	-16.9	-21.5	-13.4	-26.6	-20.5	-14.6		

Table S2: Relative-energy (kcal/mol) for both the wet and dry mechanisms of Cpd I formation for three different spin states: Free energies are estimated with UB3LYP-GD3BJ/6-311+G(2d,2p) with ϵ =4.

Table S3: Relative-energy (kcal/mol) for the dry mechanisms of Cpd I formation in doublet spin states: Electronic and Free energies are estimated with BS1 (UB3LYP-GD3BJ/6-311+G(2d,2p) with ϵ =4) and BS2 (UB3LYP-GD3BJ/6-311+G(2df,2p).

	BS1		BS2			
	Electronic	Gibbs	Electronic	Gibbs		
RC	0.0	0.0	0.0	0.0		
TS1	3.9	3.0	3.9	3.0		
IC	-1.7	-0.3	-1.7	-0.4		
IC2	-8.7	-2.8	-8.7	-2.7		
TS2	7.7	7.7	8.0	8.0		
РС	-26.6	-28.4	-26.5	-28.3		

Table S4: Relative Free-energy (kcal/mol) for both cpd0 and Cpd I calculated in three different spin states estimated with UB3LYP-GD3BJ/6-311+G(2d,2p) in four different dielectric constants.

		Cpd 0			Cpd I	
	Doublet	Quartet	Sextet	Doublet	Quartet	Sextet
ε =4	1.3	0.0	5.1	0.0	5.3	13.8
8= 3	2.7	0.0	7.3	0.0	9.9	14.5
E =16	0.0	15.6	3.7	0.0	9.0	13.8
ε =78.4	0.0	16.2	3.0	0.0	2.5	13.5

Table S5: Selected distances between heavy atoms (Å) obtained for Cpd 0, for three different spin states: doublet (black), quartet (blue) and sextet (red). Geometries are optimized with UB3LYP-D3BJ/6-31G(d,p).

	Fe-01	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	Fe-N2 _{H175}	N2 O _{D235}	N O _{D235}
	1.97	2.65	2.87	2.76	1.83	2.74	1.88	2.68	2.86
ε =1	1.97	2.67	2.88	2.77	1.76	2.76	1.89	2.67	2.86
	2.31	2.59	2.90	2.73	1.74	2.72	1.98	2.66	2.87
	1.93	2.72	2.87	2.77	1.48	2.78	1.91	2.62	2.85
ε =4	2.31	2.62	2.93	2.72	1.48	2.78	2.08	2.60	2.85
	2.22	2.66	2.88	2.72	1.47	2.75	2.03	2.60	2.86
	1.92	2.73	2.87	2.77	1.48	2.87	1.92	2.61	2.86
8= 3	1.92	2.73	2.87	2.77	1.48	2.79	1.92	2.61	2.86
	2.21	2.72	2.88	2.66	1.47	2.76	2.03	2.60	2.86
	1.92	2.75	2.87	2.77	1.48	2.81	1.92	2.61	2.86
ε =16	1.93	2.75	2.88	2.78	1.47	2.82	1.93	2.61	2.86
	2.21	2.67	2.88	2.72	1.47	2.76	2.04	2.60	2.85
	1.91	2.76	2.86	2.77	1.47	2.81	1.93	2.60	2.86
ε =78.4	1.92	2.76	2.88	2.78	1.47	2.82	1.94	2.61	2.86
	2.19	2.68	2.89	2.73	1.47	2.76	2.05	2.58	2.84

	Fe-01	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	Fe-N2 _{H175}	N2 O _{D235}	N O _{D235}
	1.97	2.65	2.87	2.76	1.83	2.74	1.88	2.68	2.86
E =1	1.97	2.67	2.88	2.77	1.76	2.76	1.89	2.67	2.86
	2.31	2.59	2.90	2.73	1.74	2.72	1.98	2.66	2.87
	1.93	2.72	2.87	2.77	1.48	2.78	1.91	2.62	2.85
E =4	2.31	2.62	2.93	2.72	1.48	2.78	2.08	2.60	2.85
	2.22	2.66	2.88	2.72	1.47	2.75	2.03	2.60	2.86
	1.92	2.73	2.87	2.77	1.48	2.87	1.92	2.61	2.86
8= 3	1.92	2.73	2.87	2.77	1.48	2.79	1.92	2.61	2.86
	2.21	2.72	2.88	2.66	1.47	2.76	2.03	2.60	2.86
	1.92	2.75	2.87	2.77	1.48	2.81	1.92	2.61	2.86
ε =16	1.93	2.75	2.88	2.78	1.47	2.82	1.93	2.61	2.86
	2.21	2.67	2.88	2.72	1.47	2.76	2.04	2.60	2.85
	1.91	2.76	2.86	2.77	1.47	2.81	1.93	2.60	2.86
£ =78.4	1.92	2.76	2.88	2.78	1.47	2.82	1.94	2.61	2.86
	2.19	2.68	2.89	2.73	1.47	2.76	2.05	2.58	2.84

Table S6: Selected distances between heavy atoms (Å) obtained for Cpd I, for three different spin states: doublet (black), quartet (blue) and sextet (red). Geometries are optimized with UB3LYP-D3BJ/6-31G(d,p).

Table S7: Selected distances between heavy atoms (Å) obtained for the structures of cpd0 (IC2), for WT Ccp1 and the explored in-silico generated variants. Geometries are optimized with UB3LYP-D3BJ/6-31G(d,p).

	Fe-O1	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	FeN2 _{H175}	N2 O _{D235}	N O _{D235}
WT	1.99	2.76	2.81		1.48	2.69	1.90	2.70	2.85
W51A	1.97	2.74	2.85		1.48	2.55	1.91	2.72	2.86
R48A	1.93			2.81	1.47	2.70	2.09	2.57	2.84
W51F/	2.00	2.71	2.85		1.48	2.71	1.90	2.69	
W191F									
W191Y	2.01	2.76	2.82		1.48	2.91	1.89	2.63	2.75
W191A	1.97	2.74	2.85		1.48	2.87	1.88	2.70	
D235H	1.92	2.79	2.82		1.48	2.84	1.95	2.82	
D235N	1.95	2.76	2.84		1.48	3.01	1.93	2.74	
D235E	1.97	2.77	2.83		1.48	2.81	1.92	2.62 (01)	2.72 (01)
D235A	1.90	2.81	2.85		1.47	2.69	1.95		

Table S8: Selected distances between heavy atoms (Å) obtained for the structures of cpd0 (IC2), for WT Ccp1 and the explored variants Geometries are optimized with UB3LYP-D3BJ/6-31G(d,p).

	Fe- O1	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	Fe N2 _{H175}	N2 O _{D235}	N O _{D235}
WT	1.97	2.65	2.87	2.76	1.48	2.74	1.88	2.68	2.86
W51A	1.95	2.69	2.88		1.49	2.61	1.91	2.70	2.85
R48A	1.90			2.76	1.48	2.65	1.93	2.62	2.83
W51F/ W191F	1.95	2.60	2.91	2.71	1.48	2.71	1.89	2.66	
W191Y	1.97	2.65	2.90	2.76	1.48	2.76	1.88	2.61	2.74
W191A	1.96	2.63	2.87	2.77	1.50	2.73	1.88	2.71	
D235H	1.91	2.70	2.94	2.79	1.48	2.87	1.94	2.82	
D235N	1.91	2.68	2.91	2.79	1.48	2.80	1.93	2.74	
D235E	1.94	2.66	2.90	2.76	1.48	2.75	1.91	2.64	
D235A	1.91	2.70	2.94	2.81	1.48	2.88	1.95		

TableS 9: Selected distances between heavy atoms (Å) obtained for the structures of TS2, for WT Ccp1 and the explored variants Geometries are optimized with UB3LYP-D3BJ/6-31G(d,p).

	Fe-O1	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	Fe-N2 _{H175}	N2 O _{D235}	N O _{D235}
WT	2.77	2.67	2.77	2.77	1.83	2.53	1.92	2.70	2.85
W51A	1.74	2.72	2.78		1.83	2.52	1.94	2.71	2.85
R48A	1.76			2.82	1.74	2.55	1.93	2.59	2.90
W51F/ W191F	1.74	2.62	2.79	2.59	1.84	2.59	1.92	2.68	
W191Y	1.77	2.66	2.78	2.77	1.81	2.77	1.91	2.63	2.71
W191A	1.77	2.69	2.75	2.85	1.82	2.59	1.91	2.72	
D235H	1.71	2.71	2.82	2.80	1.86	2.80	1.99	2.83	
D235N	1.71	2.71	2.83	2.79	1.86	2.70	1.99	2.74	
D235E	1.74	2.79	2.67	2.77	1.84	2.63	1.95	2.62	2.74(N1)
D235A	1.71	2.72	2.82	2.82	1.86	2.71	2.00		

	Fe-01	10 1N _{R48}	20 2N _{R48}	10 N _{w51}	10 02	20 N _{H52}	Fe-N2 _{H175}	N2 O _{H175} D235	N O _{W191} D235
WT	1.66	2.68	2.68	2.77	2.72	2.77	2.06	2.66	2.78
W51A	1.65	2.70	2.66		2.74	2.76	2.09	2.67	2.85
R48A	1.70			2.81	2.29	2.78	1.97	2.60	2.92
W51F/									
W191F	1.64	2.67	2.69		2.68	2.82	2.09	2.80	
W191Y	1.66	2.66	2.72	2.80	2.70	2.81	2.06	2.71	2.71
W191A	1.67	2.71	2.66	2.79	2.72	2.74	2.06	2.80	
D235H	1.67	2.74	2.70	2.66	2.73	2.75	2.05	2.86	
D235N	1.67	2.74	2.70	2.66	2.73	2.75	2.05	2.77	
D235E	1.67	2.66	2.71	2.72	2.70	2.82	2.03	2.65	2.59 (N1)
D235A	1.67	2.74	2.69	2.67	2.73	2.75	2.06		

Table S11: Spin density sum Values for the major spin contaminated components of Cpd I obtained for WT Ccp1 and its studied variants calculated with UB3LYP-D3BJ/6-31G(d,p).

	WT	R48A	W51A	W191Y	W191A	D235H	D235N	D235E	D235A	W51F/ W191F
$\pi_{_{\rm FeO}}$	2.11	2.07	2.07	2.07	2.07	2.08	2.08	2.08	2.08	0.96
$\pi_{_{_{_{_{His}}}}}$	-0.49	0.51	-0.60	-0.66	-0.62					-0.88
$\pi_{_{\mathrm{Trp}}}$	-0.45	-0.21	-0.41	-0.24			-0.14	-0.55		
$\pi_{_{\mathrm{por}}}$		-0.29			-0.36	-0.35	-0.34	-0.30	-0.38	-0.17
$\pi_{_{_{W51}}}$		0.12			-0.12	-0.65	-0.61	-0.25	-0.66	