Time-dependent multivariate and spectroscopic characterization of oil residue in Niger

Delta soil

Nnamdi David Menkiti ^{ab}, Chukwuemeka Isanbor ^{+b}, Olusegun Ayejuyo ^b, Louis Korbla

Doamekpor^c, Emmanuel Osei Twum^c

- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
 E-mail: ndmenkiti@abu.edu.ng
- ^{b.} Department of Chemistry, University of Lagos, Akoka, Nigeria *E-mail:cisanbor@unilag.edu.ng*, oayejuyo@unilag.edu.ng
- ^{*c.*} Department of Chemistry, University of Ghana, Legon, Ghana

Supporting information

Table S1 Structural s	spectrometric indices	obtained from	Infrared region	(Permanyer et al.,)1
-----------------------	-----------------------	---------------	-----------------	--------------------	----

Structures indices	Formulae
Aromatic index	$A_{1600}/\sum A$
Aliphatic index	$A_{1600} + A_{1376} / \sum_{A}$
Branched index	$A_{1376} / A_{1460} + A_{1376}$
Long-chain index	$A_{724}/A_{1460} + A_{1376}$ (Aliphatic structures)
Carbonyl index	A_{1700}/\sum_{A}
Sulfoxide index	$A_{1030}/\sum_{A_{\text{(Oxygenated function)}}}$
$\sum A$	$A_{1700} + A_{1600} + A_{1460} + A_{1376} + A_{1030} + A_{846} + A_{814} + A_{743} + A_{724} +$

* The subscripts represent the wavenumbers under which the areas were obtained, $\sum A =$ The sum of areas identified in the spectrum.

Samples	Age of spill (yrs)	λ_1 (nm)	λ_2 (nm)	A ₂₀₅ /A ₂₁₅	A ₂₂₈ /A ₂₅₆	A ₂₄₈ / A ₂₆₇	A ₂₄₈ / A ₂₇₈
S1	10	228	278	1.413	1.477	0.817	0.849
S2	10	228	274	1.440	1.364	0.747	0.751
S3	8	226	264	1.418	1.466	0.975	1.084
S4	5	226	258	1.483	1.477	0.983	1.094
S5	2	226	272	1.525	1.234	0.798	0.802
S 6	1	228	262	1.213	1.532	0.823	0.875
B1	1	230	254	1.485	1.898	1.204	1.481
B2	1	230	258	1.485	1.514	0.979	1.092
FC	NA	224	256	1.434	2.946	1.000	1.281

Table S2. UV absorption maxima and absorption ratios for oil residues

Wavelength					
(cm ⁻¹)	Assignment				
3425	v (N-H), H-bond pyrrollic group				
3400	v (O-H), inter H-bonded, broad band				
3040	$v(C-H)_{ar}$, aromatic or unsaturated				
2920,2850	ν (C-H), of aliphatic CH ₂ and CH ₃				
1775	ν (C=O), ester with electron-with drawing group attached to single-bonded oxygen, like Ar-C-O-R				
1735*	v (C=O), ester				
1720-1690*	v(C=O), ketone, aldehyde, carboxylic				
1650-1630*	N(C=O), highly conjugated ketone Ar-CO-R				
1600	v (C=C), aromatic				
1590-1560	$v(COO^{-} \text{ carboxylic salt})$				
1490*	Aromatic ring stretch frequency				
1450	$\delta(CH_2 + CH_3)$, bending vibrations				
1375	$\delta(CH_3)$, bending vibrations				
1300-1100*	v(C-O) and v (O-H), in phenoxyl structure, ethers and vibrations of –S-linkages				
1100-1000	v(C-O), aliphatic ether, alcohol				
1030	(S=O) Sulphoxide				
875	$\gamma(CH_{ar1})$, isolated aromatic H				
810-5	$\gamma(CH_{ar2,3})$, isolated two and/or three H on aromatic ring				
750	$\gamma(CH_{ar4})$, 1,2 substituted, 4 neighbouring H				
784*	$\Gamma(CH_2)_{n, n < 4}$, alkyl chain				
720	$\Gamma(CH_2)_{n, n>4}$, alkyl chain				

 Table S3. Assignment of IR absorption bands.

*Very weak shoulder band to nearby broad base band

	Aromatic Index	Aliphatic Index	Branched Index	Long chain Index	Carbonyl Index	Sulfoxide Index	$\sum A$
S1	0.04	0.04	0.82	2.66	0.02	0.06	57.99
S2	0.01	0.05	0.89	3.19	0.01	0.06	55.20
S3	0.02	0.05	0.88	2.59	0.01	0.06	56.89
S4	0.01	0.05	0.88	2.89	0.00	0.06	55.83
S5	0.02	0.05	0.91	2.58	0.03	0.06	58.43
S6	0.02	0.04	0.79	2.37	0.02	0.06	56.85
B1	0.01	0.05	0.88	3.00	0.02	0.01	48.38
B2	0.01	0.06	0.88	3.69	0.03	0.01	48.75
FC	0.04	0.04	0.82	2.98	0.00	0.06	53.36

 Table S4 Spectrometric index calculated from IR region

 Table S5 Gas chromatography weathering index

Sample*	Time of spill (years)	Pr/Ph	Pr/ n-C ₁₇	Ph/ n-C ₁₈	СРІ	$(Pr + n-C_{17})/(Ph + n-C_{18})$		
S1F1	10	1.190	5.512	4.312	1.029	0.061		
S2F1	10	0.740	5.814	6.763	1.029	0.532		
S3F1	8	0.790	3.421	6.614	1.035	0.062		
S4F1	5	1.220	6.601	4.971	1.034	0.871		
S5F1	2	1.151	3.082	3.774	1.034	0.772		
S6F1	1	1.561	2.711	2.463	1.042	0.894		
FCF1	NA	1.192	2.362	1.725	1.050	1.073		
$CPI = \frac{\sum (nC_{11} to \ nC_{27})}{\sum (nC_{10} to \ nC_{26})}$								

* F1 means saturate fraction of samples,

References

1 A. Permanyer, L. Douifi, A. Lahcini, J. Lamontagne and J. Kister, *Fuel*, 2002, **81**, 861-866.