Supplementary Information

Improved Hydrogen Evolution Performance by Engineering Bimetallic AuPd Loaded on Amino and Nitrogen Functionalized Mesoporous Hollow Carbon Spheres

Lenan Wang^{a,b}, Zhankui Zhao^a, Hongli Wang^{a,*}, Yue Chi^{a,b,*}

^aCollege of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun, 130012, China. E-mail: yuechi@ccut.edu.cn, wanghongli@ccut.edu.cn
^bAdvanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China. E-mail: yuechi@ccut.edu.cn

Fig. S1. SEM image (a) and TEM image of HMCS (b).

Fig. S2. SEM image(a) and TEM image(b) of Au_{0.3}Pd_{0.7}/NH₂-N-HMCS.

Fig. S3. EDX spectrum of $Au_{0.3}Pd_{0.7}/NH_2$ -N-HMCS

Fig. S4. The XRD patterns of Au_{0.3}Pd_{0.7}/HMCS and Au_{0.3}Pd_{0.7}/N-HMCS.

Fig. S5. The XPS spectrum of $Au_{0.3}Pd_{0.7}/NH_2$ -N-HMCS.

Fig. S6. The high-resolution XPS spectra of Au 4f for $Au_{0.3}Pd_{0.7}/NH_2$ -N-HMCS.

Fig. S7. Time-course plots for the dehydrogenation of FA (1.0 M, 5.0 mL) catalyze by Au_xPd_{1-x}/NH_2 -N-HMCS (x= 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) at 298 K (a) and the related initial TOF values (b).

Fig. S8. TEM image of $Au_{0.3}Pd_{0.7}/HMCS$.

Fig. S9. TEM images of $Au_{0.3}Pd_{0.7}/N$ -HMCS.

Table S1. Comparisons of catalytic activities for the dehydrogenation of FA catalyzedby previously reported heterogeneous catalysts with the as-synthesized $Au_{0.3}Pd_{0.7}/NH_2$ -

Catalyst	Temp.	Additive	TOF (h ⁻¹)	Ref
	(K)			
Au@Pd/UiO-	303	None	200	3
66(Zr ₈₅ Ti ₁₅)				
Pd/CN _{0.25}	298	None	752	17
Au1Pd1.5/MIL-101-NH2	298	None	526	40
NiPd/NH ₂ -N-rGO	298	None	954.3	33
Au _{0.75} Pd _{0.25} /C-L-7.5	298	HCOONa	718	11
Pd/S-1-in-K	298	HCOONa	856	9
(Co ₆)Ag _{0.1} Pd _{0.9} /RGO	323	HCOONa	2739	41
$Au_2Pd_3(a)(P)N-C$	303	HCOONa	5400	6
Au _{0.3} Pd _{0.7} /NH ₂ -N-HMCS	298	None	7747	This work

N-HMCS in this work.

Fig. S10. Durability test of $Au_{0.3}Pd_{0.7}/NH_2$ -N-HMCS towards the dehydrogenation of FA.

Fig. S11. (a) TEM image and (b) the corresponding particle size distribution of $Au_{0.3}Pd_{0.7}/NH_2$ -N-HMCS after the 4th run.