Electronic Supplementary Information (ESI)

Structural and Anionic Effects of Microcrystalline Zn-CPs on 4-Nitrophenol Sensing

Performances

Hyemin Lee¹, Min-Yeong Kim*,², and Haeri Lee*,¹

¹Department of Chemistry, Hannam University, Daejeon, 34054, Republic of Korea

²Department of Electrochemistry, Korea Institute of Materials Science (KIMS), Changwon,

51508, Republic of Korea

Figure S1. ¹H NMR spectrum for starting materials and L in DMSO- d_6 ([†]CD₂HSOCD₂H, ^{*}H₂O).

Figure S2. ¹³C NMR spectrum for L in DMSO-*d*₆ ([†]CD₂HSOCD₂H, ^{*}H₂O).

Figure S3. ¹H-¹H COSY spectrum for L in DMSO-*d*₆ ([†]CD₂HSOCD₂H, *H₂O).

Figure S4. ¹H-¹H NOESY spectrum for L in DMSO- d_6 .

Figure S5. TG analysis for L.

Figure S6. High-resolution ESI-Mass spectrum for L, m/z 189.1140 (black, inset) and calcd for $[C_{10}H_{12}N_2 + H^+]^+ = 189.1140$ (red, inset).

Figure S7. FT-IR spectra for L (a), $[ZnL_3]_n(ClO_4)_{2n}$ (b), $[ZnL_3]_n(BF_4)_{2n}$ (c), and $[Zn_2(NO_3)_4L_3]_n$ (d).

Figure S8. TG analyses and DSC curves for $[ZnL_3]_n(ClO_4)_{2n}$ (a), $[ZnL_3]_n(BF_4)_{2n}$ (b), and $[Zn_2(NO_3)_4L_3]_n$ (c). For $[Zn_2(NO_3)_4L_3]_n$, 12% weight loss in a range of 25 to 50°C refers to the evaporation of CHCl₃ which is the mother liquid for crystallization.

Refinement Details

Most disagreeable reflections were omitted by OMIT instruction.

For $[Zn_2(NO_3)_4L_3]_n$, disordered solvate molecules were squeezed out by Platon.¹

SQUEEZE RESULTS (Version = 140621) # Note: Data are Listed for all Voids in the P1 Unit Cell # i.e. Centre of Gravity, Solvent Accessible Volume, # Recovered number of Electrons in the Void and # Details about the Squeezed Material loop_ platon squeeze void nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 0.000 0.000 0.500 32'' 121

Table S1. Selected bond lengths and angles for $[ZnL_3]_n(BF_4)_{2n}$, $[ZnL_3]_n(ClO_4)_{2n}$, and

 $[Zn_2(NO_3)_4L_3]_n$

$[\operatorname{ZnL}_3]_n(\operatorname{BF}_4)_{2n}$		$[\operatorname{ZnL}_3]_n(\operatorname{ClO}_4)_{2n}$		$[\mathbf{Zn}_2(\mathbf{NO}_3)_4\mathbf{L}_3]_n$	
Zn(1)-N(1)#1	2.192(3)	Zn(1)-N(2)#1	2.1949(13)	Zn(1)-N(1)	1.9809(18)
Zn(1)-N(1)#2	2.192(3)	Zn(1)-N(2)#2	2.1949(13)	Zn(1)-N(3)	1.9984(17)
Zn(1)-N(1)#3	2.192(3)	Zn(1)-N(2)#3	2.1949(13)	Zn(1)-N(5)	2.0088(18)
Zn(1)-N(1)#4	2.192(3)	Zn(1)-N(2)#4	2.1949(13)	Zn(1)-O(1)	2.0730(17)
Zn(1)-N(1)#5	2.192(3)	Zn(1)-N(2)#5	2.1949(13)	N(1)-Zn(1)-N(3)	115.21(7)
Zn(1)-N(1)	2.192(3)	Zn(1)-N(2)	2.1949(13)	N(1)-Zn(1)-N(5)	116.98(7)
N(1)#1-Zn(1)-N(1)#2	180.00(9)	N(2)#1-Zn(1)-N(2)#2	92.43(5)	N(3)-Zn(1)-N(5)	121.92(7)
N(1)#1-Zn(1)-N(1)#3	91.96(10)	N(2)#1-Zn(1)-N(2)#3	87.57(5)	N(1)-Zn(1)-O(1)	102.89(8)
N(1)#2-Zn(1)-N(1)#3	88.04(10)	N(2)#2-Zn(1)-N(2)#3	180.00(6)	N(3)-Zn(1)-O(1)	102.99(8)
N(1)#1-Zn(1)-N(1)#4	88.04(10)	N(2)#1-Zn(1)-N(2)#4	87.57(5)	N(5)-Zn(1)-O(1)	88.70(7)
N(1)#2-Zn(1)-N(1)#4	91.96(10)	N(2)#2-Zn(1)-N(2)#4	87.57(5)		
N(1)#3-Zn(1)-N(1)#4	180.00(11)	N(2)#3-Zn(1)-N(2)#4	92.43(5)		
N(1)#1-Zn(1)-N(1)#5	91.96(10)	N(2)#1-Zn(1)-N(2)#5	92.43(5)		
N(1)#2-Zn(1)-N(1)#5	88.04(10)	N(2)#2-Zn(1)-N(2)#5	92.43(5)		
N(1)#3-Zn(1)-N(1)#5	91.96(10)	N(2)#3-Zn(1)-N(2)#5	87.57(5)		
N(1)#4-Zn(1)-N(1)#5	88.04(10)	N(2)#4-Zn(1)-N(2)#5	180.00(12)		
N(1)#1-Zn(1)-N(1)	88.04(10)	N(2)#1-Zn(1)-N(2)	180		
N(1)#2-Zn(1)-N(1)	91.96(10)	N(2)#2-Zn(1)-N(2)	87.57(5)		
N(1)#3-Zn(1)-N(1)	88.04(10)	N(2)#3-Zn(1)-N(2)	92.43(5)		
N(1)#4-Zn(1)-N(1)	91.96(10)	N(2)#4-Zn(1)-N(2)	92.43(5)		
N(1)#5-Zn(1)-N(1)	180	N(2)#5-Zn(1)-N(2)	87.57(5)		

#1 y,-x+y,-z+2 #2 -y,x-y,z #3 x-y,x,-z+2 #4 -x+y,-x,z #5 -x,-y,-z+2

#1 -x,-y,-z #2 x-y,x,-z #3 -x+y,-x,z #4 -y,x-y,z #5 y,-x+y,-z

Figure S9. SEM images and EDS data for microcrystals were obtained after the deposition on SPEC working electrode from the dispersion in an aqueous solution for $[ZnL_3]_n(BF_4)_{2n}$ (a), $[ZnL_3]_n(ClO_4)_{2n}$ (b), and $[Zn_2(NO_3)_4L_3]_n$ (c).

Figure S10. Powder XRD patterns for $[ZnL_3]_n(BF_4)_{2n}$ (a, b), $[ZnL_3]_n(ClO_4)_{2n}$ (c, d), and $[Zn_2(NO_3)_4L_3]_n$ (e, f).

Figure S11. Electron transport behaviors of bare, $[ZnL_3]_n(BF_4)_{2n}$, $[ZnL_3]_n(ClO_4)_{2n}$, and $[Zn_2(NO_3)_4L_3]_n$ electrodes at scan rate 50 mV s⁻¹. The $[Zn_2(NO_3)_4L_3]_n$ electrode showed low electrochemical activity due to structural instability. In particular, $[ZnL_3]_n(BF_4)_{2n}$ showed the highest electrochemical activity among the three zinc(II) materials, which indicates that modified on the electrode surface with $[ZnL_3]_n(BF_4)_{2n}$ effectively accelerated electron transfer process between the molecules and the electrode surface.

Figure S12. Proposed mechanism for 4-NP oxidation under present conditions.

Reference

A. L. Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors, *Acta Crystallogr. Sect. C Struct. Chem.*, 2015, **71**, 9–18.