Supplementary Information for

The Influence of Electron Utilization Pathways on Photosystem I Photochemistry in *Synechocystis* sp. PCC 6803

Sharon L. Smolinski, Carolyn E. Lubner, Zhanjun Guo, Jacob H. Artz, Katherine A. Brown, David W. Mulder, and Paul W. King

Corresponding Author: Paul W. King, paul.king@nrel.gov

This PDF file includes:

Supplementary Experimental Figures S1 to S10 Tables S1 to S10

Table of Contents

Supplementary Experimental 1	L-2
Figure S1	3
Figure S2	4
Figure S3	5
Figure S4	6
Figure S5	7
Figure S6	8
Figure S7	9
Figure S8	10
Figure S9	11
Figure S10	12
Table 1	13
Table 2	14
Table 3	15
Table 4	16
Table 5	17
Table 6	18
Table 7	19
Table 8	20
Table 9	21
Table 10	22

Supplementary Experimental

O₂ uptake

 O_2 uptake activities from *S*. 6803 cell suspensions grown in either GL or FL were measured at the final growth timepoint, with an HPR-40 MIMS Membrane Inlet Mass Spectrometer (Hiden Analytical, United Kingdom) equipped with a quartz probe. The probe was immersed in a 0.01 L custom-made transparent gas-tight glass reaction vessel (Allen Scientific Glass Blowers, USA). The reaction vessel was placed in a black PVC box opaque to light, which was equipped with 4 2V-LED (one on each side of the box) providing a cool white light (6000 K). Highest intensity inside the reaction vessel was estimated to be 400 μ mol photons m⁻² s⁻¹.

4 ml of fresh BG-11 medium was first introduced into the reaction vessel, continuously stirred and kept at 30 °C by a thermostatic water bath surrounding the reaction vessel. N₂ was bubbled for 3 min in the closed system to remove most of the ¹⁶O₂. A controlled volume of ¹⁸O₂ was then injected in the system; equilibration between the headspace and the liquid phase was achieved after 10-15 min. A 2 mL aliquot of cell sample was placed in a sealed vial and flushed with N₂ for 2 min in the dark and then injected into the reaction vessel. After 3 min of equilibration in the dark, samples were illuminated with white light (400 µmol photons m⁻² s⁻¹). The reaction vessel was washed between experiments with ethanol and thoroughly rinsed with deionized water. ¹⁶O₂ evolution and ¹⁸O₂ uptake rates were determined by fitting the initial change in concentration to a linear function. Rates were then normalized to chlorophyll (chl) concentration. Chl concentration was determined by preparing 10 µl of sample in 990 µl methanol, vortexing and then centrifuging the sample at 6,200 x g for 1 min. Absorbance of the supernatant was measured at 663 nm, and chl concentration was determined from the equation: mg ml⁻¹ = A663 x (100/82).

SDS-PAGE and immunoblotting

In order to assess the PsaL protein levels across the purified fractions from DEAE column, samples, normalized to the same chl concentration, were incubated with equal volume of 2X Laemmli SDS sample buffer containing 5% 2-mercaptoethanol at 100 °C for 10 min. Samples were loaded onto Tris-Glycine gels (4568124, BioRad), alongside standards (1610376, BioRad) and run at 200 V for 30 min. The proteins were transferred to a polyvinylidene fluoride (PVDF) membrane (1620174, BioRad), using a semidry apparatus, and immunoblotted with PsaL antibody (provided by Dr. John Golbeck's laboratory, Penn State). The original image was reversed in order to show black bands against a white background and cropped.

Determination of P700

The amount of P_{700} in the PSI trimers and monomers isolated using anion-exchange chromatography was determined using fluorescence emission analysis at 77K (**Table S**). The chl concentration of the samples were normalized to 3 mg ml⁻¹. The maximum value of the peaks at approximately 718 nm and 685 nm, associated with PSI and PSII respectively, were determined. The ratio of the chl attributable to PSI and PSII was determined by maximum value of peak at 718 nm \div maximum value of peak at 685 nm. The P₇₀₀ (nmol) in the PSI samples was determined based on the amount of chl in the sample attributable to PSI. In the diluted PSI trimer samples, P₇₀₀ (nmol) was determined by: (chl concentration of diluted sample \div 893.51) \div 95. P₇₀₀ in the diluted PSI monomer samples (nmol) was determined by: [(chl concentration of diluted sample x (ratio for PSI:PSII x 95)) \div ((ratio for PSI:PSII x 95) + (ratio value for PSII, which is 1 x 35) \div 893.51] \div 95. The number of chl molecules in PSI monomeric unit: 95. The number of chl molecules in PSII monomeric unit: 95. The number of the molecules in PSII: 35. The molecular weight of chl: 893.51 g mol⁻¹. The amount of P₇₀₀ (nmol) in the non-diluted PSI monomer or trimer sample (nmol) based on the amount of chl, as determined by: [(nmol P₇₀₀ in diluted sample for fluorescence emission spectra samples) \div (3 mg ml⁻¹ chl)] x (chl concentration of non-diluted PSI sample).

Fig. S1. Elution profiles from anion exchange chromatography showing two fractions isolated from thylakoid membranes. A) WT cultured in standard conditions for 96 h, B) ORR1 cultured in standard conditions for 96 h, C) WT cultured under increased flux (FL) for 96 h, D) ORR1 cultured under increased flux (FL) for 96 h. Peaks showing absorbance at 700 nm correspond to fraction 1 containing PSI monomers (and PSII), and fraction 2 containing PSI trimers. Volume is total eluted volume, with 0 mL being the point at which sample was loaded. WT: black; ORR1: red.

Fig. S2. BN-PAGE analysis of fractions containing PSI monomers or trimers. Fractions were purified from thylakoid membranes using sucrose gradients, from WT and ORR1 cells grown in standard conditions (GL) or increased photon flux (FL) for 96 h.

Fig. S3. Immunoblots of isolated PSI monomers and trimers from cells cultured under standard growth conditions (GL) and increased and fluctuating light (FL). PSI monomers or trimers were isolated using anion-exchange chromatography, separated using SDS-PAGE and immunoblotted against PsaL antibody: A) PSI monomers, B) PSI trimers.

Fig. S4. P_{700} kinetics on whole cells cultured in standard conditions (GL) for 96 h, and measured A) without inhibitors, and B) upon the addition of DCMU. WT: black; ORR1: red. Data are the average of 3 to 4 biological replicates.

Fig. S5. Fluorescence emission spectra of PSI monomers and trimers. A) Fluorescence emission spectra collected at room temperature using 450 nm excitation on PSI trimers and monomers isolated from WT and ORR1 cells grown in standard conditions. B) Fluorescence emission spectra collected at room temperature using 450 nm excitation on PSI trimers and monomers isolated from cells grown in increased photon flux conditions (FL). Peak intensity was normalized to WT trimer for each condition. WT: black, ORR1: red, PSI trimers: solid line, PSI monomers: dashed line.

Fig. S6. Growth phenotype of strains in A) standard conditions and B) under increased flux (FL). WT: black; ORR1: red. Data are based on the average of 6-8 biological replicates \pm standard deviation.

Fig. S7. P_{700} kinetics of whole cells after growth in A) standard conditions for 96 h, and B) 24 h and C) 96 h increased flux (FL). WT: black, ORR1: red. Data are the average of 4 biological replicates.

Fig. S8. P_{700} kinetics on whole cells upon addition of MV after growth in A) standard conditions for 96 h, and after B) 24 h and C) 96 h under increased flux (FL). Data are the average of 3 to 4 biological replicates. WT: black; ORR1: red.

Fig. S9. P₇₀₀ kinetics on whole cells measured upon the addition of DCMU after growth in A) standard conditions for 96 h, and B) 24 h and C) 96 h under increased flux (FL). Data are the average of 3 to 4 biological replicates. WT: black; ORR1: red.

Fig. S10. 1 Fluorescence emission spectra of PSI trimers collected at 77K using 450 nm excitation on FL PSI trimers. Data were normalized to the maximum peak (718 nm). Peak intensity was normalized to WT trimer for each condition. WT: black, ORR1: red, standard growth conditions: transparent line, FL: solid line.

Table S1. Primers used for construction of the ORR1 strain.

Target Fragment	Primer Name	Sequence
	5'EcoRI-flv1F	GAATTCCTCCTGGCCCTCAAAG
<i>flv1</i> left arm	3'flv1/aadA-atgR	ACCGCTTCCCTCATTGTTAACTAACC
	5'flv1/aadA-taaF	GGTAGTCGGCAAATAATTCAATGCGC
flv1 right arm	3'EcoRI-flv1R	GAATTCCAACGGTGCTAACAACAAG
	5'flv1/aadA-atgF	GGTTAGTTAACAATGAGGGAAGCGGT
Sp cassette	3'flv1/aadA-taaR	GCGCATTGAATTATTTGCCGACTACC

Table S2. Data used to calculate the ratio of PSI trimer to PSI monomer in thylakoid membrane sample
--

Growth Condition	Strain	Biological Replicate	Total A ₇₀₀ Peak Area PSI Monomer + PSIIª	Fraction of Chl 77K Emission from PSI Monomers ^b	PSI Monomer A ₇₀₀ Peak Area ^c	PSI Trimer A ₇₀₀ Peak Area ^d	PSI Trimer: PSI Monomer ^e	PSI Monomer: PSI Trimer ^f
		1	5939	0.35	2079	17654	8.5	0.12
	WТ	2	7552	0.45	3398	16654	4.9	0.20
GL		3	6341	0.44	2790	15121	5.4	0.18
		1	6634	0.47	3118	16289	5.2	0.19
	ORR1	2	7088	0.45	3190	17212	5.4	0.19
		3	7996	0.54	4318	14312	3.3	0.30
		1	5643	0.35	1975	16671	8.4	0.12
	WТ	2	5556	0.35	1945	16826	8.7	0.12
FL		3	5460	0.33	1802	18857	10.5	0.10
		1	10722	0.68	7291	10468	1.4	0.70
	ORR1	2	9592	0.60	5755	12039	2.1	0.48
		3	10093	0.54	5450	13560	2.5	0.40

Values based on 2 mg chl of thylakoid membrane samples loaded onto DEAE column and separated by anion-exchange chromatography.

^a Peak areas of absorbance at 700 nm (A₇₀₀) for the fraction containing PSI monomer and PSII from the separation of TM using anion exchange chromatography, based in the integration of peaks using Unicorn software (v. 5.2).

^b Calculated as the ε_{720} + (ε_{720} + ε_{686}) from the 77K fluorescence spectra using excitation at 450 nm. ε_{720} nm and ε_{686} nm are assigned to PSI monomers and PSII, respectively.

^c Fraction of A₇₀₀ from PSI monomers, calculated as (Total A₇₀₀ Peak Area) × (Fraction of ChI 77K emission from PSI monomers).

^d Peak area of A₇₀₀ for PSI trimer based on the isolation of PSI trimer using anion exchange chromatography, based on the integration of peaks using Unicorn software (v. 5.2.

^e Ratio of PSI trimer to PSI monomer, calculated as (PSI Trimer A₇₀₀ Peak Area) ÷ (PSI Monomer A₇₀₀ Peak Area).

^fRatio of PSI monomer to PSI trimer, calculated as (PSI Monomers A₇₀₀ Peak Area) ÷ (PSI Trimer A₇₀₀ Peak Area).

Table S3. Data used to calculate the percentage of PSI trimer and PSI monomer in thylakoid membrane	e sam	ple
---	-------	-----

Growth Condition	Strain	Biological Replicate	PSI Monomer A ₇₀₀ Peak Area ^a	PSI Trimer A ₇₀₀ Peak Area ^b	PSI Trimer (% of total PSI) ^c	PSI Monomer (% of total PSI) ^d
		1	2062	17654	89	11
	WT	2	3399	16654	83	17
GL		3	2790.0	15121	84	16
		1	3118	16289	84	16
	ORR1	2	3190	17212	84	16
		3	4318	14312	77	23
		1	1975	16671	89	11
	WТ	2	1945	16826	90	10
		3	1802	18857	91	9
FL		1	7291	10468	59	41
	ORR1	2	5755	12039	68	32
		3	5349	13560	71	29

Values based on 2 mg chl of thylakoid membrane samples loaded onto DEAE column and separated by anion-exchange chromatography.

^a Fraction of A₇₀₀ from PSI monomers, calculated as (Total A₇₀₀ Peak Area) × (Fraction of Chl 77K emission from PSI monomers), see Table S1.

^b Peak area of A₇₀₀ for PSI trimer based on the isolation of PSI trimer using anion exchange chromatography, based on the integration of peaks using Unicorn software (v. 5.2), see Table S1.

^c PSI trimer as a percentage of the total PSI based on areas of fractions, calculated as (Peak area of PSI trimer) ÷ (Peak area of PSI trimer + Peak area of PSI monomer) X 100.

^d PSI monomer as a percentage of the total PSI based on areas of fractions, calculated as (Peak area of PSI monomer) ÷ (Peak area of PSI monomer + Peak area of PSI trimer) X 100.

Table S4.	¹⁸ O ₂ uptake and ¹⁶	O ₂ evolution in WT	and ORR1 cells grown	under standard conditions.
-----------	---	--------------------------------	----------------------	----------------------------

Strain	¹⁸ O ₂ Uptake ^a	¹⁶ O ₂ Evolution ^b
WT	0.8 ± 0.4	11.2 ± 0.4
ORR1	0	6.3 ± 0.2

^a Rates of ¹⁶O₂ evolution as ppm s⁻¹ µg Chl⁻¹ were determined by fitting the initial change in concentration to a linear function, and then normalized to chlorophyll (chl) concentration. Values are based on two measurements.

^b Rates of ¹⁸O₂ uptake as ppm s⁻¹ μg Chl⁻¹ were determined by fitting the initial change in concentration to a linear function, and then normalized to chlorophyll (chl) concentration. Values are based on two measurements.

ible 55. Katio of PSI to PSII IN WT al	in OKK dencient strains based on 77 K hubrescence.	
Light Regime	Strain	PSI:PSII (77K)
GL	WT	4.7 ± 0.2
	ORR1	4.9 ± 0.5
FL	WT	4.5 ± 0.2
	ORR1	4.3 ± 0.2

Table S6. P ₇₀₀ phot photon flux (FL) co	ooxidation of PSI monomers and nditions.	d trimers from WT and OR	R1 measured at different inte	nsities of actinic light. Cells w	vere grown under standard (GL)	or increased
Growth	Actinic Light		A705 nm (mAU as %	of WT maximum value) ^a		
Condition	(µmol photons m ² s ² –	WT PSI Trimer	ORR1 PSI Trimer	WT PSI Monomer	ORR1 PSI Monomer	

condition	(p	WT PSI Trimer	ORR1 PSI Trimer	WT PSI Monomer	ORR1 PSI Monomer
	250	0.021 ^b (39)	0.020 (35)	0.023 ^b (39)	0.027 (47)
	500	0.035 (63)	0.028 (52)	0.037 (64)	0.038 (66)
	530	0.035 (64)	0.029 (53)	0.038 (66)	0.039 (67)
	550	0.036 (65)	0.030 (54)	0.039 (67)	0.039 (68)
	1000	0.044 (80)	0.037 (67)	0.047 (82)	0.047 (80)
GL	2000	0.050 (92)	0.042 (76)	0.054 (93)	0.052 (89)
	2500	0.052 (94)	0.043 (79)	0.055 (95)	0.052 (90)
	3000	0.053 (96)	0.044 (80)	0.056 (97)	0.053 (92)
	4000	0.054 (99)	0.045 (83)	0.057 (99)	0.054 (93)
	4500	0.054 (99)	0.046 (83)	0.058 (100)	0.054 (94)
	5000	0.055 (100)	0.046 (84)	0.058 (100)	0.055 (94)
	250	0.019 (40)	0.011 (22)	0.020 (39)	0.009 (19)
	500	0.028 (59)	0.015 (30)	0.029 (59)	0.014 (29)
	530	0.029 (60)	0.015 (31)	0.030 (61)	0.014 (29)
	550	0.030 (61)	0.018 (31)	0.031 (62)	0.015 (30)
	1000	0.037 (77)	0.020 (38)	0.039 (78)	0.018 (36)
FL	2000	0.044 (90)	0.021 (42)	0.045 (91)	0.020 (41)
	2500	0.045 (93)	0.021 (43)	0.046 (93)	0.021 (42)
	3000	0.046 (95)	0.021 (43)	0.047 (96)	0.021 (42)
	4000	0.048 (98)	0.022 (45)	0.049 (99)	0.022 (44)
	4500	0.048 (99)	0.022 (45)	0.049 (99)	0.022 (44)
	5000	0.049 (100)	0.022 (45)	0.050 (100)	0.022 (44)

 $^{\rm a}$ Maximum P_{700} oxidation values are absorbance at 705 nm, at 15.59 ms near the end of illumination.

 $^{\text{b}}$ WT PSI trimer and monomer (GL) measured at 200 μmol photons m $^{\text{-2}}$ s $^{\text{-1}}.$

Table S7 Maximum Proc	oxidation measured in	WT and ORR	1 whole cells withou	t the addition of	f inhibitors and u	non the addition of	of MV or DCMU
	onductor measured in			c the addition of	i initioitoi 5 unu u	poin the addition t	

Inhibitor	Growth	Strain	A705 nm mAU (% of WT) ^a				
	Condition	-	0 h ^b	24 h ^c	96 h ^d		
		WT	4040 ± 530 (100) 3381 ± 663 (100)		3394.8 ± 158 (100)		
	GL	ORR1	750 ± 29 (19)	678 ± 106 (20)	786.0 ± 285 (23)		
None		WT	3891 ± 348 (100)	3669 ± 73 (100)	3641.7 ± 139 (100)		
	FL	ORR1	690 ± 41 (18)	443 ± 68 (12)	324.1 ± 38 (9)		
		WT	4170 ± 662 (100)	3464 ± 731 (100)	3536 ± 251 (100)		
DOM	GL	ORR1	A/05 nm mA0 (% or W1)* 0 hb 24 hc 96 4040 ± 530 (100) 3381 ± 663 (100) 3394.8 ± 1 750 ± 29 (19) 678 ± 106 (20) 786.0 ± 2 3891 ± 348 (100) 3669 ± 73 (100) 3641.7 ± 1 690 ± 41 (18) 443 ± 68 (12) 324.1 ± 4170 ± 662 (100) 3464 ± 731 (100) 3536 ± 24 3708 ± 345 (89) 3869 ± 180 (112) 3912 ± 16 37787 ± 541 (100) 3620 ± 78 (100) 3756 ± 24 3518 ± 316 (93) 2240 ± 254 (62) 1801 ± 1 3711 ± 599 (100) 3201 ± 715 (100) 3348 ± 14 3391 ± 382 (91) 3574 ± 174 (112) 3621 ± 12 3521 ± 389 (100) 3461 ± 80 (100) 3496 ± 22 3365 ± 313 (96) 1833 ± 303 (53) 1392 ± 2	3912 ± 198 (111)			
DCIVIU		WT		3756 ± 243 (100)			
	FL	ORR1	3518 ± 316 (93)	A705 nm mAU (% of WT) a $24 h^c$ $96 h^d$ $3381 \pm 663 (100)$ $3394.8 \pm 158 (100)$ $678 \pm 106 (20)$ $786.0 \pm 285 (100)$ $3669 \pm 73 (100)$ $3641.7 \pm 139 (100)$ $443 \pm 68 (12)$ $324.1 \pm 38 (100)$ $3464 \pm 731 (100)$ $3536 \pm 251 (110)$ $3869 \pm 180 (112)$ $3912 \pm 198 (111)$ $3620 \pm 78 (100)$ $3756 \pm 243 (110)$ $2240 \pm 254 (62)$ $1801 \pm 145 (410)$ $3201 \pm 715 (100)$ $3348 \pm 142 (110)$ $3574 \pm 174 (112)$ $3621 \pm 114 (110)$ $3461 \pm 80 (100)$ $3496 \pm 227 (110)$ $1833 \pm 303 (53)$ $1392 \pm 233 (61)$	1801 ± 145 (48)		
	CI.	WT	3711 ± 599 (100)	3201 ± 715 (100)	3348 ± 142 (100)		
	GL	ORR1	3391 ± 382 (91)	3574 ± 174 (112)	3621 ± 114 (108)		
IVIV		WT	3521 ± 389 (100)	D) $3381 \pm 663 (100)$ 3394.8 ± 158 $678 \pm 106 (20)$ 786.0 ± 285 0) $3669 \pm 73 (100)$ 3641.7 ± 139 $443 \pm 68 (12)$ 324.1 ± 38 0) $3464 \pm 731 (100)$ $3536 \pm 251 (100)$ 0) $3464 \pm 731 (100)$ $3536 \pm 251 (100)$ 0) $3464 \pm 731 (100)$ $3536 \pm 251 (100)$ 0) $3620 \pm 78 (100)$ $3756 \pm 243 (100)$ 3) $2240 \pm 254 (62)$ $1801 \pm 145 (100)$ 0) $3201 \pm 715 (100)$ $3348 \pm 142 (110)$ 0) $3574 \pm 174 (112)$ $3621 \pm 114 (100)$ 3461 \pm 80 (100) $3496 \pm 227 (150)$ 5) $1833 \pm 303 (53)$ 1392 ± 233	3496 ± 227 (100)		
	FL	ORR1	3365 ± 313 (96)	1833 ± 303 (53)	1392 ± 233 (40)		

^a Maximum P₇₀₀ oxidation values are absorbance at 705 nm, at 14.07 ms near the end of illumination, measured using 2000 µmol photons m⁻² s⁻¹ actinic light and equivalent chl. Values based on three to four biological replicates per strain and condition.

^b Whole cells measured after an initial 36 h of grown in standard conditions (GL).

^c Whole cells measured after 24 h in standard conditions (GL) or under increased photon flux (FL), following 36 h of initial growth in standard conditions.

^d Whole cells measured after 96 h in standard conditions (GL) or under increased photon flux (FL), following 36 h of initial growth in standard conditions.

S8. Rates of P ₇₀₀ dark re-reduction measured in WT and ORR1 whole cells without the addition of inhibitors and upon the addition of DCMU. Data were collected from whole cells
grown in standard conditions (GL) or increased photon flux (FL) for 96 h, and based on measurements using 2000 μmol photons m ⁻² s ⁻¹ actinic light and equivalent chl.

Inhibitor	Growth Condition	Strain	Half-life of dark re-reduction (ms) ^a	
		WT	0.01 ± 0.005	
GL ORR1 None WT FL ORR1 WT	563 ± 183			
None		WT	0.01 ± 0.001	
	FL	ORR1	570 ± 258	
		WT	384 ± 87	
	GL	ORR1	215 ± 29	
DCMU		WT	183 ± 50	
	FL	ORR1	130 ± 6	

^a Values were calculated as half-life in milliseconds. The half-life of dark re-reduction (ms) was determined using either a linear (no inhibitor WT data) or a single exponential equation (for no inhibitor ORR strain data and DCMU data). Data are the average of two (ORR1 GL), or three to four biological replicates ± standard deviation.

Table S9. ¹⁸ O ₂ uptake, ¹⁶ O ₂ evolution in cells in WT and ORR1 cells harvested after 96 h of growth under FL.					
Strain	¹⁸ O ₂ Uptake ^a	¹⁶ O ₂ Evolution ^b			
WT	1.9 ± 0.2	10.6 ± 0.2			

0

ORR1

^a Rates of ${}^{16}O_2$ evolution as ppm s⁻¹ µg Chl⁻¹ were determined by fitting the initial change in concentration to a linear function, and then normalized to chlorophyll (chl) concentration. Values are based on single measurements.

^b Rates of ¹⁸O₂ uptake as ppm s⁻¹ μg Chl⁻¹ were determined by fitting the initial change in concentration to a linear function, and then normalized to chlorophyll (chl) concentration. Values are based on single measurements.

8.7 ± 0.1

Table S10. Quantification	of P700 in samp	oles containing PS	trimer and monomer
---------------------------	-----------------	--------------------	--------------------

Growth Condition	Strain	PSIª	Chl ^ь	Max value PSI peak ^c	Max value PSII peak ^d	PSI:PSII ^e	P ₇₀₀ in sample for emission analysis ^f	P ₇₀₀ in stock sample ^g
	WT	Trimer	235	42597			35	2769
		Trimer	76	64023			35	894
	ORR1	Trimer	206	47630			35	2427
		Trimer	293	69683			35	3452
GL	WT	Monomer	126	32657	74507	0.44	19	806
		Monomer	51	69333	178057	0.39	18	306
	ORR1	Monomer	238	45590	82700	0.55	21	1681
		Monomer	83	83757	128610	0.65	23	622
	WT	Trimer	225	59000			35	2641
		Trimer	98	33123			35	1155
	ORR1	Trimer	232	71893			35	2733
FL		Trimer	256	56660			35	3016
	WT	Monomer	125	56107	118763	0.47	20	827
		Monomer	101	59093	152363	0.39	18	610
	ORR1	Monomer	169	65703	84453	0.78	24	1351
		Monomer	75	104900	152073	0.69	23	577

^a Samples containing PSI trimer and monomer were isolated from thylakoid membranes using anion exchange chromatography, from cells cultured for 96 h under standard conditions (GL) or under increased photon flux (FL).

 b Chl concentration based on A_{663} nm by diluting 10 μl sample in 990 μl methanol, A_{663} x (100 ÷ 82).

^c Maximum value of peak at approximately 718 nm, associated with PSI, as determined by fluorescence emission spectra at 77K using 450 nm excitation wavelength and equivalent chl (3 μg ml⁻¹).

^d Maximum value of peak at approximately 685 nm, associated with PSII, as determined by fluorescence emission spectra at 77K using 450 nm excitation wavelength and equivalent chl (3 µg ml⁻¹).

e Ratio of the maximum values of peak at 718 nm to 685 nm, which is the ratio of chl in PSI to chl in PSII, based on fluorescence emission spectra at 77K.

 f P₇₀₀ (nmol) in the PSI samples was based on the amount of chl in the sample attributable to PSI. In the diluted PSI trimer samples, P₇₀₀ (nmol) was determined by: (chl concentration of diluted sample \div 893.51) \div 95. P₇₀₀ in the diluted PSI monomer samples (nmol) was determined by: [(chl concentration of diluted sample \div 893.51) \div 95. P₇₀₀ in the diluted PSI monomer samples (nmol) was determined by: [(chl concentration of diluted sample \star (ratio for PSI:PSII x 95)) \div ((ratio for PSI:PSII x 95) + (ratio value for PSII, which is 1 x 35) \div 893.51] \div 95. The number of chl molecules in PSI monomeric unit: 95. The number of chl molecules in PSI: 35. The molecular weight of chl: 893.51 g mol⁻¹.

^g P₇₀₀ in the non-diluted PSI monomer or trimer sample (nmol) based on the amount of chl, as determined by: [(nmol P₇₀₀⁺ in diluted sample for fluorescence emission spectra samples) ÷ (3 µg ml-1 chl)] x (chl concentration of non-diluted PSI sample).