Supporting Information for

Reactions of [60]Fullerene with Alkynes promoted by OH⁻

Weiwei Chang ^{a,b}, Fagui He^{* b,c}, Alberto García Peñas^d, Mehdihasan I. Shekh^e, Zongjun Li^b,

^a Analysis & Testing Center, Shandong University of Technology, 12 Zhangzhou Road, Zibo, Shandong, 255000, China

^b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences,

Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China

^c State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

^d Department of Materials Science and Engineering and Chemical Engineering, IAAB, University Carlos III of Madrid, Madrid 28911, Spain

e New Energy Materials Laboratory, College of Materials Science, Shenzhen University, Shenzhen 518055, China

E-mail address: hefg@dicp.ac.cn.

Table of Contents

Experimental Section		
Figure S1	HPLC trace of the crude mixture formed from the reaction of 1a with	S9
	C_{60} in the presence of TBAOH/CH ₃ OH at 100 °C	
Figure S2	HPLC trace of the crude mixture formed from the reaction of 1b with	S10
	C_{60} in the presence of TBAOH/CH ₃ OH at 100 °C	
Figure S3	HPLC trace of the crude mixture formed from the reaction of 1c with	S11
	C_{60} in the presence of TBAOH/CH ₃ OH at 100 °C	
Figure S4	HPLC trace of the crude mixture formed from the reaction of 1d with	S12
	C_{60} in the presence of TBAOH/CH ₃ OH at 100 °C	
Figure S5	HPLC trace of the crude mixture formed from the reaction of 7 with	S13
	C_{60} in the presence of TBAOH/CH ₃ OH at 25 °C	
Figure S6	HPLC trace of the crude mixture formed from the reaction of 7 with	S14
	C_{60} in the presence of TBAOH/ isopropanol at 25 °C	
Figure S7	Positive ESI FT-ICR MS of 2a	S15
Figure S8	¹ H NMR spectrum of compound 2a	S16

Figure S9	¹³ C NMR spectrum of 2a	S17
Figure S10	UV-visible spectrum of compound 2	a S18
Figure S11	Negative ESI FT-ICR MS of 2b	S19
Figure S12	¹ H NMR spectrum of compound 2b	S20
Figure S13.	¹³ C NMR spectrum of 2b	S21
Figure S14	UV-visible spectrum of compound 2	2 b \$22
Figure S15	Positive ESI FT-ICR MS of 2c	S23
Figure S16	¹ H NMR spectrum of compound 2c	S24
Figure S17	¹³ C NMR spectrum of compound 2c	S25
Figure S18	UV-visible spectrum of compound 2	S26
Figure S19	Positive ESI FT-ICR MS of 2d	S27
Figure S20	¹ H NMR spectrum of compound 2d	S28
Figure S21	¹³ C NMR spectrum of compound 2d	S29
Figure S22	UV-visible spectrum of compound 2	d \$30
Figure S23	Positive ESI FT-ICR MS of 7a	S31
Figure S24	¹ H NMR spectrum of 7a	\$32
Figure S25	¹³ C NMR spectrum of 7a	\$33
Figure S26	HMBC NMR spectrum of 7a	S34
Figure S27	HSQC NMR spectrum of 7a	S35
Figure S28	UV-visible spectrum of compound 7	Ya \$36
Figure S29	Negative ESI FT-ICR MS of 7b	S37
Figure S30	¹ H NMR spectrum of 7b	S38
Figure S31	¹³ C NMR spectrum of 7b	S39
Figure S32	HMBC NMR spectrum of 7b	S40
Figure S33	HMBC NMR spectrum of 7b	S41
Figure S34	UV-visible spectrum of compound 7	7 b S42
Figure S35	Negative ESI FT-ICR MS of 7c	S43

Figure S36	¹ H NMR spectrum of 7 c	S44
Figure S37	¹³ C NMR spectrum of 7c	S45
Figure S38	HMBC NMR spectrum of 7c	S46
Figure S39	UV-visible spectrum of compound 7c	S47
Figure S40	¹ H NMR spectrum of 7	S48
Figure S41	¹ H NMR spectrum of methyl propiolate	S49
Figure S42	¹ H NMR spectrum of crude mixture formed from the reaction of 7	
with TBAOH/CH ₃ OH at 100 °C		

Experimental Section

Chemicals. All reagents were obtained commercially and used without further purification, unless otherwise specified. CS_2 was distilled over P_2O_5 at 305 K prior to use.

Preparation of Compound 2a with C_{60} **.** Typically, 36 mg of C_{60} (50 µmol) and 20 equiv of **1a** (110µL) was put into mixture of *o*-DCB (20 mL), which was degassed with argon for 15 min under vigorous stirring at 100°C. Then 3 equiv of TBAOH (1.0 M in methanol, 150µL) was added into the solution. The color of the solution changed instantly from purple to dark-green. Then 5 equiv of CF₃COOH (19µL) was added after 1h and the reaction was allowed to proceed for 80 min. The mixture was dried with a rotary evaporator under reduced pressure. The residue was washed with methanol to remove excessive TBAOH and CF₃COOH. The crude product was put into toluene, and the soluble part was purified using a semi-preparative Buckyprep column (10 mm × 250 mm) eluted with toluene at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm. Compound **2a** was obtained with an isolated yield of 35.2% (11.11 mg), along with 28.9% of C_{60} .

Spectral Characterizations of Compound 2a. Positive ESI-ICR HRMS: *m/z* calculated for (C₆₈H₆⁺) [M]⁺ 822.0464, found: 822.0471; ¹H NMR (600 MHz, CS₂/ DMSO-*d*₆): δ 7.49 (m, 2H), 7.20 (m, 3H), 6.87 (s, 1H); ¹³C NMR (125 MHz, CS₂/ DMSO-*d*₆): δ 151.26 (2C), 151.05 (2C), 147.45 (2C), 147.19 (2C), 146.52 (2C), 146.26 (2C), 146.09 (2C), 145.65 (2C), 145.59 (2C), 145.48 (2C), 145.41 (2C), 145.30 (2C), 145.23 (2C), 144.57 (2C), 144.40 (2C), 143.11 (2C), 142.50 (2C), 142.47 (2C), 142.00 (2C), 141.94 (2C), 141.92 (2C), 141.77 (2C), 141.60 (2C), 141.52 (2C), 140.29 (2C), 140.27 (2C), 136.43 (2C), 136.01 (2C), 135.03 (2C), 132.07 (2C), 128.82, 128.49 (2C), 122.52, 92.35, 84.03, 61.76, 54.98; UV-vis (toluene) λ_{max} /nm: 326 and 434nm.

Preparation of Compound 2b. The procedures were similar to those for preparation of 2a,

except **1b** (80mg) was used instead of **1a**, and the reaction was allowed to proceed for 1 h after the addition of CF₃COOH. Compound **2b** was obtained with an isolated yield of 29.0% (8.84 mg), along with 22.3% of C_{60} .

Spectral Characterizations of Compound 2b. Negative ESI-ICR HRMS: m/z calculated for $(C_{69}H_7O^+)$ [M]⁺ 851.0491, found:851.0474;¹H NMR (500 MHz, CS₂/ DMSO- d_6) δ 7.39 (d, J = 8.5 Hz,2H), 6.85 (s, 1H), 6.67 (d, J = 8.5 Hz,2H), 3.64 (s, 3H);¹³C NMR (150 MHz, CS₂/ DMSO- d_6) δ 159.70 (2C), 151.18 (2C), 151.14 (2C), 147.23 (2C), 146.97 (2C), 146.32 (2C), 146.04 (2C), 145.86 (2C), 145.44 (2C), 145.39 (2C), 145.33 (2C), 145.30 (2C), 145.24 (2C), 145.18 (2C), 145.06 (2C), 145.00 (2C), 144.35 (2C), 144.20 (2C), 142.88 (2C), 142.26 (2C), 141.79 (2C), 141.72 (2C), 141.69 (2C), 141.60 (2C), 141.38 (2C), 141.29 (2C), 140.07 (2C), 140.01 (2C), 135.84 (2C), 134.72, 133.26 (2C), 114.29, 113.90 (2C), 90.84, 83.97, 61.77, 54.84, 54.55; UV-vis (toluene) λ_{max} /nm: 327 and 434 nm.

Preparation of Compound 2c. The procedures were similar to those for preparation of **2a**, except **1c** (12.6mg) was used instead of **1a**, and the reaction was allowed to proceed for 1 h after the addition of CF₃COOH. Compound **2c** was obtained with an isolated yield of 31.7% (11.38 mg), along with 21.1% of C_{60} .

Spectral Characterizations of Compound 2c. Positive ESI-ICR HRMS: *m/z* calculated for (C₇₀H₆⁺) [M]⁺ 846.0464, found:846.0456; ¹H NMR (500 MHz, CS₂/ DMSO-*d*₆) δ 7.46 (d, *J* = 6.7 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.87 (s, 1H) , 2.94 (s, 1H); ¹³C NMR (125 MHz, CS₂/ DMSO-*d*₆) δ 151.11 (2C), 150.74 (2C), 147.47 (2C), 147.20 (2C), 146.49 (2C), 146.30 (2C), 146.27 (2C), 146.12 (2C), 146.10 (2C), 145.63 (2C), 145.62 (2C), 145.42 (2C), 145.41 (2C), 145.32 (2C), 145.24 (2C), 144.57 (2C), 144.39 (2C), 143.12 (2C), 142.53 (2C), 142.49 (2C), 141.99 (2C), 141.95 (2C), 141.92 (2C), 141.74 (2C), 141.61 (2C), 141.54 (2C), 140.31 (2C), 135.96 (2C), 135.08 (2C), 132.24 (2C), 131.85 (2C), 123.04, 122.72, 94.21, 83.43, 83.33, 80.01, 61.79, 54.98; UV-vis

(toluene) λ_{max} : 327 and 434 nm.

Preparation of Compound 2d. The procedures were similar to those for preparation of **2a**, except 20 equiv of **1d** (100 μ L) was used instead of **1a**, and the reaction was allowed to proceed for 1 h after the addition of PhCH₂Br. Compound **2d** was obtained with an isolated yield of 31.5% (8.95 mg), along with 16.4% of C₆₀.

Spectral Characterizations of Compound 2d: Positive ESI-ICR MS: *m/z* calculated for (C₇₅H₁₂⁺) [M]⁺ 912.0933, found: 912.0950; ¹H NMR (600 MHz, CS₂/ DMSO-*d₆*) δ 7.47(m, 2H), 7.21-7.16 (m, 3H), 4.97 (s, 1H); ¹³C NMR (150 MHz, CS₂/ DMSO-*d₆*) δ 153.18 (2C), 152.84 (2C), 147.09 (2C), 146.96 (2C), 145.83 (2C), 145.79 (2C), 145.68 (2C), 145.63 (2C), 145.52 (2C), 145.22 (2C), 144.88 (2C), 144.74 (2C), 144.71 (2C), 144.38 (2C), 143.98 (2C), 143.95 (2C), 142.46 (2C), 142.00 (2C), 141.95 (2C), 141.58 (2C), 141.49 (2C), 141.34 (2C), 141.16 (2C), 141.11 (2C), 140.62 (2C), 139.66 (2C), 138.20 (2C), 136.14 (2C), 134.02 (2C), 133.58, 131.47 (2C), 131.25 (2C), 128.28, 128.00 (2C), 127.60 (2C), 126.65, 122.10, 87.79, 86.47, 65.79, 60.03, 49.92; UV-vis (toluene) λ_{max} /nm: 327 and 434nm

X-ray Crystal data for **2d**: Empirical formula: C_{75} H₁₂; Formula weight: 912.85; Crystal system, space group: Monoclinic, P2(1)/c; Unit cell dimensions: a= 20.5241(16) Å, b= 10.0720(8)Å, c= 19.8797(16)Å, $\alpha=90.00^{\circ}$, $\beta= 115.3050^{\circ}$, $\gamma=90.00^{\circ}$; Volume: 3715.2(5) Å³; Calculated density: 1.632 Mg m⁻³; Crystal size: 0.32 x 0.18 x 0.13 mm; Reflections collected: 23317; Max. and min. transmission: 0.9879 and 0.9706; Final R indices [I>2 σ (I)]: R₁ = 0.0516, wR₂= 0.0843; R indices (all data): R₁ = 0.1342, wR₂ = 0.1083.

Preparation of Compound 7a and 7b. Typically, 36 mg of C_{60} (50µmol) and 10 equiv of 7 (50µL) was put into mixture of *o*-DCB (20mL), which was degassed with argon for 15 min under vigorous stirring at 25°C. Then 3 equiv of TBAOH (1.0 M in methanol, 150µL) was added into the

solution. The color of the solution changed instantly from purple to dark-green. Then 5 equiv of CF₃COOH (19 μ L) was added after 1h and the reaction was allowed to proceed for 80 min. The mixture was dried with a rotary evaporator under reduced pressure. The residue was washed with methanol to remove excessive TBAOH and CF₃COOH. The crude product was put into toluene, and the soluble part was purified using a semi-preparative Buckyprep column (10 mm × 250 mm) eluted with toluene at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm. Compound **7a** and **7b** was obtained with an isolated yield of 35.2% and 11.8% respectively, along with 28.9% of C₆₀.

Spectral Characterizations of Compound 7a: Positive ESI-ICR MS: m/z calculated for $(C_{66}H_{13}O_4^+)$ [M+H]⁺ 869.0814, found: 869.6473; ¹H NMR (500 MHz, CS₂/ DMSO- d_6) δ 6.97(s, 1H), 5.48 (d, J = 7.4 Hz, 1H), 4.33 (d, J = 7.4 Hz, 1H), 3.65 (s, 3H), 3.51(s, 3H), 3.48(s, 3H); ¹³C NMR (125 MHz, CS₂/ DMSO- d_6) δ 169.37, 154.34 (2C), 153.47, 153.22, 152.91, 147.40, 147.06, 146.87, 146.84, 146.48, 146.28, 146.26, 146.22, 146.18, 146.07, 146.03, 145.99 (2C), 145.70, 145.67, 145.54, 145.50, 145.33, 145.26, 145.21, 145.18, 145.17(2C), 144.71, 144.67, 144.39, 144.30, 143.14, 143.08, 142.47, 142.45, 142.44 (2C), 142.38, 142.17, 142.02, 141.92, 141.90, 141.88 (2C), 141.45, 141.40, 141.39, 141.31, 141.25, 140.26, 140.22, 139.49, 139.36, 136.49, 136.43, 135.98, 135.88, 105.31, 63.48, 61.13, 58.16, 55.29, 54.79, 51.74; UV-vis (toluene) λ_{max} : 329 and 435 nm.

Spectral Characterizations of Compound 7b: Negative ESI-ICR MS: m/z calculated for $(C_{67}H_{13}O_4^{-})$ [M-H] ⁻ 881.0814, found: 881.0799; ¹H NMR (500 MHz, CS₂/ DMSO- d_6) δ 6.96(s, 1H), 5.47 (d, J = 7.6 Hz, 1H), 4.29 (d, J = 7.6 Hz, 1H), 4.10 (q, J = 7.4 Hz, 2H), 3.65(s, 3H), 3.49(s, 3H), 1.15 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CS₂/ DMSO- d_6) δ 168.83, 154.39 (2C), 153.50, 153.28, 152.92, 147.39, 147.05, 147.00, 146.88, 146.84, 146.63, 146.26, 146.22, 146.18, 146.06, 146.02, 145.98, 145.70, 145.68, 145.65, 145.53, 145.32, 145.23, 145.20 (2C), 145.16 (2C),

144.70, 144.66, 144.39, 144.30, 143.14, 143.07, 142.44 (2C), 142.38, 142.14, 142.01, 141.90 (2C), 141.45, 141.39, 141.36, 141.30, 141.24, 140.25, 140.21, 139.41, 139.27, 136.49, 136.43, 136.00, 135.93, 129.01, 128.21, 105.33, 63.56, 61.13 (2C), 60.94 (2C), 58.24, 55.34, 54.72, 14.57; UV-vis (toluene) λ_{max} : 329 and 435 nm.

Preparation of Compound 7c. The procedures were similar to those for preparation of 7, except TBAOH (1.0 M in methanol) was used instead of TBAOH (1.0 M in isopropanol, 389μ L), and the reaction was allowed to proceed for 1 h after the addition of CF₃COOH. Compound **7c** was obtained with an isolated yield of 27.46% (8.72 mg), along with 6.9% of C₆₀.

Spectral Characterizations of Compound 7c: Negative ESI-ICR HRMS: m/z calculated for $(C_{65}H_6O_2^{-})$ [M - H] ⁻ 817.0290, found:817.0260; ¹H NMR (600 MHz, CS₂/ DMSO- d_6) δ 7.09 (s, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CS₂/ DMSO- d_6) δ 153.17, 150.63 (2C), 149.12 (2C), 147.75, 147.47, 146.62 (2C), 146.63 (2C), 146.53 (2C), 146.40 (4C), 146.39 (4C), 146.01 (2C), 145.86, 145.65 (4C), 145.50 (4C), 144.82 (2C), 144.52 (2C), 143.35 (2C), 142.81 (2C), 142.75 (2C), 142.21 (2C), 142.20 (2C), 142.19 (2C), 142.17 (2C), 141.82 (2C), 141.80 (2C), 141.71 (2C), 140.65 (2C), 140.52 (2C), 135.85, 135.76, 129.10, 128.32, 88.50, 75.26, 62.46, 61.00, 54.32, 14.51; UV-vis (toluene) λ_{max} : 327 and 433 nm.

Figure S1. HPLC trace of the crude mixture formed from the reaction of 1a with C_{60} in the presence of TBAOH/CH₃OH at 100 °C. The product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S2. HPLC trace of the crude mixture formed from the reaction of 1b with C_{60} in the presence of TBAOH/CH₃OH at 100 °C. The product was eluted with toluene over a semipreparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S3. HPLC trace of the crude mixture formed from the reaction of 1c with C_{60} in the presence of TBAOH/CH₃OH at 100 °C. The product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S4. HPLC trace of the crude mixture formed from the reaction of 1d with C_{60} in the presence of TBAOH/CH₃OH at 100 °C. The product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S5. HPLC trace of the crude mixture formed from the reaction of 7 with C_{60} in the presence of TBAOH/CH₃OH at 100 °C. The product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S6. HPLC trace of the crude mixture formed from the reaction of 7 with C_{60} in the presence of 1.0 M TBAOH in isopropanol at 25 °C. The product was eluted with toluene over a semipreparative Buckyprep column at a flow rate of 3.7 mL/min with the detector wavelength set at 380 nm.

Figure S7. Positive ESI FT-ICR MS of 2a.

Figure S8. ¹H NMR spectrum of 2a recorded in CS_2 with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.3 ppm is due to H₂O in DMSO.

Figure S9. ¹³C NMR spectrum of 2a recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S10. UV-visible spectrum of compound 2a recorded in toluene.

Figure S11. Negative ESI FT-ICR MS of 2b.

Figure S12. ¹H NMR spectrum of **2b** recorded in CS_2 with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.3 ppm is due to H₂O residue in DMSO.

Figure S13. ¹³C NMR spectrum of 2b recorded in CS₂ with DMSO- d_6 as the external lock.

Figure S14 UV-visible spectrum of compound 2b recorded in toluene.

Figure S15. Positive ESI FT-ICR MS of 2c.

Figure S16. ¹H NMR spectrum of 2c recorded in CS₂ with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.3 ppm is due to H₂O in DMSO.

Figure S17. ¹³C NMR spectrum of 2c recorded in CS₂ with DMSO- d_6 as the external lock.

Figure S18. UV-visible spectrum of compound 2c recorded in toluene.

Figure S19. Positive ESI FT-ICR MS of 2d.

Figure S20. ¹H NMR spectrum of 2d recorded in CS_2 with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.33 ppm is due to H₂O in DMSO.

Figure S21. ¹³C NMR spectrum of 2d recorded in CS₂ with DMSO- d_6 as the external lock.

Figure S22. UV-visible spectrum of compound 2d recorded in toluene.

Figure S23. Positive ESI FT-ICR MS of 7a.

Figure S24. ¹H NMR spectrum of 7a recorded in CS_2 with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.3 ppm is due to H₂O in DMSO.

Figure S25. ¹³C NMR spectrum of 7a recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S26. HMBC NMR spectrum of 7a recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S27. HSQC NMR spectrum of 7a recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S28. UV-visible spectrum of compound 7a recorded in toluene.

Figure S29. Positive ESI FT-ICR MS of 7b.

Figure S30. ¹H NMR spectrum of **7b** recorded in CS_2 with DMSO- d_6 as the external lock. The resonance around 2.5 ppm is due to the DMSO solvent, and the resonance around 3.3 ppm is due to H₂O in DMSO.

Figure S31. ¹³C NMR spectrum of 7b recorded in CS_2 with DMSO- d_6 as the external lock

Figure S32. HMBC NMR spectrum of 7b recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S33. HSQC NMR spectrum of 7b recorded in CS_2 with DMSO- d_6 as the external lock.

Figure S34. UV-visible spectrum of compound 7b recorded in toluene.

Figure S35. Negative ESI FT-ICR MS of 7c.

Figure S36. ¹H NMR spectrum of 7c recorded in CS_2 with $CDCl_3$ - as the external lock. The resonance around 7.26 ppm is due to the $CDCl_3$ solvent, and the resonance around 2.36 ppm is due to toluene in solvent.

Figure S37. ¹³C NMR spectrum of 7c recorded in CS_2 with $CDCl_3$ as the external lock.

S45

Figure S38. HMBC NMR spectrum of 7c recorded in CS₂ with CDCl₃- as the external lock.

Figure S39. UV-visible spectrum of compound 7c recorded in toluene.

Figure S40. ¹H NMR spectrum of 7 recorded in CDCl₃. The resonance around 7.26 ppm is due to

the CDCl₃ solvent.

Figure S41. ¹H NMR spectrum of methyl propiolate recorded in CDCl₃-. The resonance around

7.26 ppm is due to the $CDCl_3$ solvent.

Figure S42. ¹H NMR spectrum of the crude mixture formed from the reaction of 7 TBAOH/CH₃OH at 100 $^{\circ}$ C, recorded in CDCl₃.