Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

1 Table 1. LC-HR-ESIMS dereplication results of the alcoholic extract of *Livistona decipens*

2 leaves and fruits

3

		L. decipiens						
No.	Metabolite name	Leaves	Fruits	RT (min.)	MF	m/z	Calculated <i>m/z</i>	
1	ρ- Hydroxybenzoic acid	×	\checkmark	2.0135	$C_7H_6O_3$	137.0238	138.0317	
2	Syringol	×		2.0486	$C_8H_{10}O_3$	153.0557	154.0629	
3	Neochlorogenic acid			2.2486	$C_{16}H_{18}O_9$	353.0881	354.0951	
4	Isoorientin			2.3678	C ₂₁ H ₂₀ O ₁₁	447.0932	448.1006	
5	Caffeic acid			2.3739	$C_9H_8O_4$	179.0346	180.0422	
6	(+)-Catechin			2.4451	$C_{15}H_{14}O_6$	289.0713	290.0790	
7	Vitexin		×	2.6408	$C_{21}H_{20}O_{10}$	431.0974	432.1056	
8	Isoquercetin			2.7137	$C_{21}H_{20}O_{12}$	463.0876	464.0955	
9	Quercetin	×		2.7605	$C_{15}H_{10}O_7$	301.0351	302.0427	
10	(-)-Epiafzelechin	×		2.9733	$C_{15}H_{14}O_5$	273.0766	274.0841	
11	Tricin	×		3.8475	$C_{17}H_{14}O_{7}$	329.0658	330.0739	
12	Luteolin			4.2993	C ₁₅ H ₁₀ O ₆	285.0763	286.0477	

4

- 6

- 7
- 8

⁵ MF: molecular formula, RT: retention time, min: minute.

9

10 **Table 2**: Predicted binding free energy (ΔG) in kcal/mol for dereplicated compounds with the 11 active site of COVID-19 virus M^{pro} (PDB 7BQY; co-crystallized with N3) compared to two 12 structurally similar COVID-19 virus M^{pro} inhibitors, namely cinanserin and shikonin.

13

14

Ligand	Predicted ∆G	In vitro COVID-19	Antiviral activity	
	(kcal/mol) COVID-19	virus M ^{pro} IC ₅₀	determined by	
	virus M ^{pro}	(# M) ^a	qRT - $PCR (\mu M)^a$	
Isoquercetin (8)	-8.2	ND ^b	ND ^b	
Vitexin (7)	-7.6	ND ^b	ND ^b	
Isoorientin (4)	-7.6	ND ^b	ND ^b	
Cinanserin	-6.9	124.93 ± 7.89	20.61 ± 0.97	
Neochlorogenic acid (3)	-6.8	ND^{b}	ND ^b	
Tricin (11)	-6.7	ND^{b}	ND ^b	
Shikonin	-6.5	15.75 ± 8.22	ND ^b	
Quercetin (9)	-6.4	ND^{b}	ND ^b	
Luteolin (12)	-6.2	ND^{b}	ND ^b	
Epiafzelechin (10)	-6.2	ND^{b}	ND ^b	
Catechin (6)	-5.8	ND ^b	ND ^b	
Caffeic acid (5)	-4.8	ND ^b	ND ^b	
Syringol (2)	-4.8	ND^{b}	ND ^b	
Aesculetin	-4.7	ND^{b}	ND ^b	
ρ-Hydroxybenzoic acid	-4.4	ND ^b	ND ^b	

(1)

^a In vitro COVID-19 virus M^{pro} IC₅₀ and antiviral activity shown as reported (Jin et al. 2020).

^b ND, not determined.

15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

Table 3. Drug-likeness based on Lipinski's rule of five, ADME properties and medicinal
chemistry parameters.

Ligand	# of	Pgp	GI	Bioavailability	PAINS
	violations	substrate	Absorption	score	alerts
Isoquercetin (8)	2	No	Low	0.17	1
Vitexin (7)	1	No	Low	0.55	0
Isoorientin (4)	2	No	Low	0.17	1
Cinanserin	0	No	High	0.55	0
Neochlorogenic acid	1	No	Low	0.11	1
(3)					
Tricin (11)	0	No	High	0.55	0
Shikonin	0	No	High	0.55	2
Quercetin (9)	0	No	High	0.55	1
Luteolin (12)	0	No	High	0.55	1
Epiafzelechin (10)	0	Yes	High	0.55	0
Catechin (6)	0	Yes	High	0.55	1
Caffeic acid (5)	0	No	High	0.56	1
Syringol (2)	0	No	High	0.55	0
Aesculetin	0	No	High	0.55	1
ρ-Hydroxybenzoic	0	No	High	0.56	0

- 47
- 48 Figure 2. Predicted 2D/3D docking poses of three flavonoid glucosides (isoquercetin, vitexin,
- 49 and isoorientin) occupying the same pocket as the co-crystallized ligand (N3) showing their
- 50 binding interactions with the key amino acids in the active site of COVID-19 virus M^{pro}. M^{pro}
- 51 is shown as green background, N3 is in magenta and flavonoids are in blue.
- 52

⁵³ 54

- 55
- 56 Figure 3. Predicted 2D/3D docking poses of neochlorogenic acid and tricin compared to their
- 57 corresponding structurally similar COVID-19 virus M^{pro} inhibitors, namely cinanserin and 58 shikonin showing their binding interactions with the key amino acids in the active site of
- 59 COVID-19 virus M^{pro}. M^{pro} is shown as green background and ligands are in blue.
- 60

- 61 62
- 63 Figure 4. Predicted 2D/3D docking poses of four flavonoids (luteolin, quercetin, epiafzelechin
- 64 and catechin) showing their binding interactions with the key amino acids in the active site of
- 65 COVID-19 virus M^{pro}. M^{pro} is shown as green background and ligands are in blue.
- 66
- 67

- 68
- 69 Figure 5. Predicted 2D/3D docking poses of four dereplicated compounds (aesculetin, caffeic
- 70 acid, 4-hydroxybenzoic acid and syringol) showing their binding interactions with the key
- 71 amino acids in the active site of COVID-19 virus M^{pro}. M^{pro} is shown as green background and
- 72 ligands are in blue.