## Content

**Fig. S1:** <sup>1</sup>H-NMR of the black residue after heating **3** at 120 °C for 3 h under inert conditions at atmospheric pressure.

Fig. S2: ATR-IR spectrum of Fe(acac)<sub>2</sub>(TMEDA).

Fig. S3: ATR-IR spectrum of Fe(tfac)<sub>2</sub>(TMEDA) 1.

Fig. S4: ATR-IR spectrum of Fe(hfac)<sub>2</sub>(TMEDA).

**Fig. S5:** ATR-IR spectrum of Ni(acac)<sub>2</sub>(TMEDA).

Fig. S6: ATR-IR spectrum of Ni(tfac)<sub>2</sub>(TMEDA) 2.

**Fig. S7:** ATR-IR spectrum of Ni(hfac)<sub>2</sub>(TMEDA).

**Fig. S8:** ATR-IR spectrum of Cu(tfac)<sub>2</sub>(TMEDA) **3**.

**Fig. S9:** ATR-IR spectrum of Cu(hfac)<sub>2</sub>(TMEDA).

**Fig. S10:** ATR-IR spectrum of Zn(acac)<sub>2</sub>(TMEDA).

Fig. S11: ATR-IR spectrum of Zn(tfac)<sub>2</sub>(TMEDA) 4.

**Fig. S12:** ATR-IR spectrum of Zn(hfac)<sub>2</sub>(TMEDA).

**Fig. S13:** Isothermal TGA curves (125 °C) for  $M(acac)_2$ ,  $M(acac)_2$ (TMEDA),  $M(tfac)_2$ (TMEDA) and  $M(hfac)_2$ (TMEDA) (M = Fe (a), Ni (b), Cu (c) and Zn (d)).

Fig. S14: XRD of 1.

Fig. S15: XRD of 2.

Fig. S16: XRD of 3.

Fig. S17: XRD of 4.

Fig. S18: 3D model of the MOCVD reactor.

Fig. S19: SEM of 1\_Si at 300 °C (a), 400 °C (b) and 500 °C (c).

Fig. S20: SEM of 1\_Si at 300 °C (a), 400 °C (b) and 500 °C (c).

Fig. S21: SEM of 1\_Si at 300 °C (a), 400 °C (b) and 500 °C (c).

**Fig. S22:** SEM of **1\_Si** at 300 °C (a), 400 °C (b) and 500 °C (c).

Fig. S23: EDX spectrum of1\_Al

Fig. S24: EDX spectrum of 2\_AI

Fig. S25: EDX spectrum of3\_AI

Fig. S26: EDX spectrum of 4\_AI

Fig. S27: XRD of 1\_Si.

Fig. S28: XRD of 2\_Si.

- Fig. S29: XRD of 3\_Si.
- Fig. S30: XRD of 4\_Si.
- Fig. S31: SEM image of 1\_AI.
- Fig. S32: Cross section SEM image of 1\_AI.
- Fig. S33: SEM image of 2\_AI.
- Fig. S34: Cross section SEM image of 2\_AI.
- Fig. S35: SEM image of 3\_AI.
- Fig. S36: Cross section SEM image of 3\_AI.
- Fig. S37: SEM image of 4\_AI.
- Fig. S38: Cross section SEM image of 4\_AI.
- Fig. S39: XPS of 1\_AI. Survey (a), Fe 2p (b), O 1s (c) and C 1s (d).
- Fig. S40: XPS of 1\_Al after calcination. Survey (a), Fe 2p (b), O 1s (c) and C 1s (d).
- Fig. S41: XPS of 2\_AI. Survey (a), Ni 2p (b), O 1s (c) and C 1s (d).
- Fig. S42: XPS of 2\_AI after calcination. Survey (a), Ni 2p (b), O 1s (c) and C 1s (d).
- Fig. S43: XPS of 3\_AI. Survey (a), Cu 2p (b), O 1s (c) and C 1s (d).
- Fig. S44: XPS of 3\_AI after calcination. Survey (a), Cu 2p (b), O 1s (c) and C 1s (d).
- Fig. S45: Cu LMM spectra of 3\_AI before and after calcination.
- Fig. S46: XPS of 4\_AI. Survey (a), Zn 2p (b), O 1s (c) and C 1s (d).
- Fig. S47: XPS of 4\_AI after calcination. Survey (a), Zn 2p (b), O 1s (c) and C 1s (d).
- Fig. S48: Zn LMM spectra of 4\_AI before and after calcination.
- Tab. S1: Crystal Data and Structure Refinement for 1.
- Tab. S2: Crystal Data and Structure Refinement for 2.
- Tab. S3: Crystal Data and Structure Refinement for 3.
- Tab. S4: Crystal Data and Structure Refinement for 4.
- Tab. S5: Overview on intermolecular contacts in 1-4.
- Tab. S6: Experimental conditions.
- Tab. S7: Calculation of the mod. Auger parameter for 3\_AI
- Tab. S8: Calculation of the mod. Auger parameter for 4\_AI

| Empirical Formula                                             | $C_{16}H_{24}F_6N_2O_4Fe$                                                                                              |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Formular weight                                               | 478.22 Da                                                                                                              |
| Density (calculated)                                          | 1.509 g · cm <sup>-1</sup>                                                                                             |
| F (000)                                                       | 984                                                                                                                    |
| Temperature                                                   | 100(2) K                                                                                                               |
| Crystal size                                                  | 0.322 x 0.156 x 0.098 mm                                                                                               |
| Crystal appearance                                            | red tablet                                                                                                             |
| Wavelenght (MoK $_{\alpha}$ )                                 | 0.71073 Å                                                                                                              |
| Crystal system                                                | Monoclinic                                                                                                             |
| Space group                                                   | P2 <sub>1</sub> /c                                                                                                     |
| Unit cell volume                                              | a = 8.2798(9) Å<br>b = 26.236(3) Å<br>c = 10.1171(11) Å<br>$\alpha$ = 90°<br>$\beta$ = 106.7333(16)°<br>$\gamma$ = 90° |
| Unit cell volume                                              | 2104.6(4) Å <sup>3</sup>                                                                                               |
| Z                                                             | 4                                                                                                                      |
| Cell measurement refections used                              | 9940                                                                                                                   |
| artheta range for cell measurement                            | 2.24° to 24.80°                                                                                                        |
| Diffractometer used for measurement                           | Bruker D8 KAPPA II (APEX II detector)                                                                                  |
| Diffractometer control software                               | BRUKER APEX3 (v2019.1-0)                                                                                               |
| Measurement method                                            | Data collection strategy APEX 3/QUEEN                                                                                  |
| $\vartheta$ range for data collection                         | 2.613° to 30.749°                                                                                                      |
| Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ ) | 99.9% (99.5%)                                                                                                          |
| Index ranges                                                  | $-11 \le h \le 11$ $0 \le k \le 37$ $0 \le l \le 14$                                                                   |
| Computing data reduction                                      | BRUKER APEX3 (v2019.1-0)                                                                                               |
| Absorption correction                                         | Semi-empirical form equivalents                                                                                        |
| Absorption coefficient                                        | 0.792 mm <sup>-1</sup>                                                                                                 |
| Absorption correction computing                               | TWINABS                                                                                                                |
| Max./min. transmission                                        | 0.75/0.61                                                                                                              |

| <i>R<sub>merg</sub></i> before/after correction | 0.0678/0.0551 and 0.0902/0.0653                                                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------|
| Computing structure solution                    | BRUKER APEX3 (v2019.1-0)                                                                 |
| Computing structure refinement                  | SHELXL-2017/1 (Sheldrick, 2017)                                                          |
| Refinement method                               | Full-matrix least-squares on <i>F</i> <sup>2</sup>                                       |
| Reflections collected                           | 117073                                                                                   |
| Independent reflections                         | 6534 (R <sub>int</sub> = 0.0797)                                                         |
| Reflections with I > $2\sigma$ (I)              | 5293                                                                                     |
| Data / retraints / parameter                    | 6534 / 142 / 324                                                                         |
| Goodness-of-fit on F <sup>2</sup>               | 1.075                                                                                    |
| Weighting details                               | $\omega = 1/[\sigma^2(F_0^2) + (0.0395P)^2 + 0.9427P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| R indices $[I > 2\sigma (I)]$                   | R1 = 0.0416<br>$\omega R2 = 0.0866$                                                      |
| R indices [all data]                            | R1 = 0.0605<br>$\omega R2 = 0.0931$                                                      |
| Largest diff. peak and hole                     | 0.591 and –0.299 Å <sup>-3</sup>                                                         |

| Tab. S2 | 2: Crystal | Data an | d Structure | Refinement | t for <b>2</b> . |
|---------|------------|---------|-------------|------------|------------------|
|---------|------------|---------|-------------|------------|------------------|

| Empirical Formula                                                                                                                                                                                            | $C_{16}H_{24}F_6N_2O_4Ni$                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formular weight                                                                                                                                                                                              | 481.08 Da                                                                                                                                                                                               |
| Density (calculated)                                                                                                                                                                                         | 1.552 g · cm <sup>-1</sup>                                                                                                                                                                              |
| F (000)                                                                                                                                                                                                      | 992                                                                                                                                                                                                     |
| Temperature                                                                                                                                                                                                  | 100(2) К                                                                                                                                                                                                |
| Crystal size                                                                                                                                                                                                 | 0.350 x 0.216 x 0.208 mm                                                                                                                                                                                |
| Crystal appearance                                                                                                                                                                                           | blue tablet                                                                                                                                                                                             |
| Wavelenght (MoK $_{\alpha}$ )                                                                                                                                                                                | 0.71073 Å                                                                                                                                                                                               |
| Crystal system                                                                                                                                                                                               | Monoclinic                                                                                                                                                                                              |
| Space group                                                                                                                                                                                                  | P21/c                                                                                                                                                                                                   |
| Unit cell volume                                                                                                                                                                                             | a = 8.1121(5) Å<br>b = 20.0344(13) Å<br>c = 12.6691(8) Å<br>$\alpha = 90^{\circ}$<br>$\beta = 91.0753(15)^{\circ}$<br>$\gamma = 90^{\circ}$                                                             |
| Unit cell volume                                                                                                                                                                                             | 2058.6(2) ų                                                                                                                                                                                             |
| Z                                                                                                                                                                                                            | 4                                                                                                                                                                                                       |
| Cell measurement refections used                                                                                                                                                                             | 9716                                                                                                                                                                                                    |
| artheta range for cell measurement                                                                                                                                                                           | 3.17° to 33.32°                                                                                                                                                                                         |
| Diffractometer used for measurement                                                                                                                                                                          | Bruker D8 KAPPA II (APEX II detector)                                                                                                                                                                   |
| Diffractometer control software                                                                                                                                                                              | BRUKER APEX3 (v2019.1-0)                                                                                                                                                                                |
| Measurement method                                                                                                                                                                                           | Data collection strategy APEX 3/QUEEN                                                                                                                                                                   |
|                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| of range for data collection                                                                                                                                                                                 | 1.902° to 33.425°                                                                                                                                                                                       |
| $\vartheta$ range for data collection<br>Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ )                                                                                                       | 1.902° to 33.425°<br>99.9% (99.8%)                                                                                                                                                                      |
| $\vartheta$ range for data collection<br>Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ )<br>Index ranges                                                                                       | 1.902° to 33.425°<br>99.9% (99.8%)<br>$-12 \le h \le 12$<br>$-30 \le k \le 31$<br>$-19 \le l \le 13$                                                                                                    |
| $\vartheta$ range for data collection<br>Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ )<br>Index ranges<br>Computing data reduction                                                           | 1.902° to 33.425°<br>99.9% (99.8%)<br>$-12 \le h \le 12$<br>$-30 \le k \le 31$<br>$-19 \le l \le 13$<br>BRUKER APEX3 (v2019.1-0)                                                                        |
| $\vartheta$ range for data collection<br>Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ )<br>Index ranges<br>Computing data reduction<br>Absorption correction                                  | 1.902° to 33.425°<br>99.9% (99.8%)<br>$-12 \le h \le 12$<br>$-30 \le k \le 31$<br>$-19 \le l \le 13$<br>BRUKER APEX3 (v2019.1-0)<br>Semi-empirical form equivalents                                     |
| $\vartheta$ range for data collection<br>Completeness to $\vartheta = 25.242^{\circ}$ (to $\vartheta_{max}$ )<br>Index ranges<br>Computing data reduction<br>Absorption correction<br>Absorption coefficient | 1.902° to 33.425°<br>99.9% (99.8%)<br>$-12 \le h \le 12$<br>$-30 \le k \le 31$<br>$-19 \le l \le 13$<br>BRUKER APEX3 (v2019.1-0)<br>Semi-empirical form equivalents<br>1.020 mm <sup>-1</sup>           |
| ϑ range for data collectionCompleteness to ϑ = 25.242° (to ϑmax)Index rangesComputing data reductionAbsorption correctionAbsorption coefficientAbsorption correction computing                               | 1.902° to 33.425°<br>99.9% (99.8%)<br>$-12 \le h \le 12$<br>$-30 \le k \le 31$<br>$-19 \le l \le 13$<br>BRUKER APEX3 (v2019.1-0)<br>Semi-empirical form equivalents<br>1.020 mm <sup>-1</sup><br>SADABS |

| <i>R<sub>merg</sub></i> before/after correction | 0.0445/0.0352                                                                            |
|-------------------------------------------------|------------------------------------------------------------------------------------------|
| Computing structure solution                    | BRUKER APEX3 (v2019.1-0)                                                                 |
| Computing structure refinement                  | SHELXL-2017/1 (Sheldrick, 2017)                                                          |
| Refinement method                               | Full-matrix least-squares on <i>F</i> <sup>2</sup>                                       |
| Reflections collected                           | 82511                                                                                    |
| Independent reflections                         | 8019 (R <sub>int</sub> = 0.0226)                                                         |
| Reflections with I > $2\sigma$ (I)              | 7248                                                                                     |
| Data / retraints / parameter                    | 8019 / 53 / 327                                                                          |
| Goodness-of-fit on F <sup>2</sup>               | 1.046                                                                                    |
| Weighting details                               | $\omega = 1/[\sigma^2(F_0^2) + (0.0353P)^2 + 0.6264P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| R indices $[I > 2\sigma (I)]$                   | R1 = 0.0245<br>$\omega R2 = 0.0642$                                                      |
| R indices [all data]                            | R1 = 0.0286<br>$\omega R2 = 0.0667$                                                      |
| Largest diff. peak and hole                     | 0.557 and –0.353 Å <sup>-3</sup>                                                         |

| Tab. S3: Crystal Data an | d Structure Refinement for 3. |
|--------------------------|-------------------------------|
|--------------------------|-------------------------------|

| Empirical Formula                                             | $C_{16}H_{24}F_6N_2OCu$                                                                                                   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Formular weight                                               | 495.91 Da                                                                                                                 |
| Density (calculated)                                          | 1.541 g · cm <sup>-1</sup>                                                                                                |
| F (000)                                                       | 996                                                                                                                       |
| Temperature                                                   | 100(2) K                                                                                                                  |
| Crystal size                                                  | 0.362 x 0.325 x 0.110 mm                                                                                                  |
| Crystal appearance                                            | green plate                                                                                                               |
| Wavelenght (MoK $_{\alpha}$ )                                 | 0.71073 Å                                                                                                                 |
| Crystal system                                                | Monoclinic                                                                                                                |
| Space group                                                   | P2 <sub>1</sub> /n                                                                                                        |
| Unit cell volume                                              | a = 9.7772(10) Å<br>b = 15.3822(16) Å<br>c = 14.6761(15) Å<br>$\alpha$ = 90°<br>$\beta$ = 108.4413(16)°<br>$\gamma$ = 90° |
| Unit cell volume                                              | 2093.9(4) ų                                                                                                               |
| Z                                                             | 4                                                                                                                         |
| Cell measurement refections used                              | 9810                                                                                                                      |
| artheta range for cell measurement                            | 2.56° to 32.98°                                                                                                           |
| Diffractometer used for measurement                           | Bruker D8 KAPPA II (APEX II detector)                                                                                     |
| Diffractometer control software                               | BRUKER APEX3 (v2019.1-0)                                                                                                  |
| Measurement method                                            | Data collection strategy APEX 3/QUEEN                                                                                     |
| $\vartheta$ range for data collection                         | 2.220° to 33.481°                                                                                                         |
| Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ ) | 100% (99.3%)                                                                                                              |
| Index ranges                                                  | $-15 \le h \le 15$<br>$-23 \le k \le 23$<br>$-22 \le l \le 22$                                                            |
| Computing data reduction                                      | BRUKER APEX3 (v2019.1-0)                                                                                                  |
| Absorption correction                                         | Semi-empirical form equivalents                                                                                           |
| Absorption coefficient                                        | 1.119 mm <sup>-1</sup>                                                                                                    |
| Absorption correction computing                               | SADABS                                                                                                                    |
| Max./min. transmission                                        | 0.75/0.60                                                                                                                 |

| <i>R<sub>merg</sub></i> before/after correction | 0.0647/0.0448                                                                            |
|-------------------------------------------------|------------------------------------------------------------------------------------------|
| Computing structure solution                    | BRUKER APEX3 (v2019.1-0)                                                                 |
| Computing structure refinement                  | SHELXL-2017/1 (Sheldrick, 2017)                                                          |
| Refinement method                               | Full-matrix least-squares on F <sup>2</sup>                                              |
| Reflections collected                           | 70229                                                                                    |
| Independent reflections                         | 8143 (R <sub>int</sub> = 0.0384)                                                         |
| Reflections with I > $2\sigma$ (I)              | 6554                                                                                     |
| Data / retraints / parameter                    | 8143 / 349 / 353                                                                         |
| Goodness-of-fit on F <sup>2</sup>               | 1.053                                                                                    |
| Weighting details                               | $\omega = 1/[\sigma^2(F_0^2) + (0.0348P)^2 + 0.9588P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| R indices $[I > 2\sigma (I)]$                   | R1 = 0.0291<br>$\omega R2 = 0.0696$                                                      |
| R indices [all data]                            | R1 = 0.0448<br>$\omega R2 = 0.0782$                                                      |
| Largest diff. peak and hole                     | 0.623 and –0.657 Å <sup>-3</sup>                                                         |

| Tab. S4: Cryst | al Data a | nd Structure | Refinement for 4 |
|----------------|-----------|--------------|------------------|
|----------------|-----------|--------------|------------------|

| Empirical Formula                                             | $C_{16}H_{24}F_6N_2O_4Zn$                                                                                      |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Formular weight                                               | 487.74 Da                                                                                                      |
| Density (calculated)                                          | 1.437 g <sup>.</sup> cm <sup>-1</sup>                                                                          |
| F (000)                                                       | 1000                                                                                                           |
| Temperature                                                   | 100(2) K                                                                                                       |
| Crystal size                                                  | 0.541 x 0.359 x 0.190 mm                                                                                       |
| Crystal appearance                                            | colourless tablet                                                                                              |
| Wavelenght (MoK $_{\alpha}$ )                                 | 0.71073 Å                                                                                                      |
| Crystal system                                                | Monoclinic                                                                                                     |
| Space group                                                   | P21/c                                                                                                          |
| Unit cell volume                                              | a = 8.323(19) Å<br>b = 20.79(5) Å<br>c = 13.03(3) Å<br>$\alpha$ = 90°<br>$\beta$ = 90.27(4)°<br>$\gamma$ = 90° |
| Unit cell volume                                              | 2254(9) Å <sup>3</sup>                                                                                         |
| Z                                                             | 4                                                                                                              |
| Cell measurement refections used                              | 4056                                                                                                           |
| $\vartheta$ range for cell measurement                        | 3.69° to 30.34°                                                                                                |
| Diffractometer used for measurement                           | Bruker D8 KAPPA II (APEX II detector)                                                                          |
| Diffractometer control software                               | BRUKER APEX3 (v2019.1-0)                                                                                       |
| Measurement method                                            | Data collection strategy APEX 2/COSMO                                                                          |
| $\vartheta$ range for data collection                         | 3.826° to 31.386°                                                                                              |
| Completeness to $\vartheta$ = 25.242° (to $\vartheta_{max}$ ) | 98.8% (93.9%)                                                                                                  |
| Index ranges                                                  | $-9 \le h \le 11$<br>$-29 \le k \le 29$<br>$-19 \le l \le 18$                                                  |
| Computing data reduction                                      | BRUKER APEX3 (v2019.1-0)                                                                                       |
| Absorption correction                                         | Semi-empirical form equivalents                                                                                |
| Absorption coefficient                                        | 1.160 mm <sup>-1</sup>                                                                                         |
| Absorption correction computing                               | SADABS                                                                                                         |
| Max./min. transmission                                        | 0.75/0.62                                                                                                      |

| <i>R<sub>merg</sub></i> before/after correction | 0.1676/0.0869                                                                            |
|-------------------------------------------------|------------------------------------------------------------------------------------------|
| Computing structure solution                    | BRUKER APEX3 (v2019.1-0)                                                                 |
| Computing structure refinement                  | SHELXL-2017/1 (Sheldrick, 2017)                                                          |
| Refinement method                               | Full-matrix least-squares on F <sup>2</sup>                                              |
| Reflections collected                           | 43803                                                                                    |
| Independent reflections                         | 6974 (R <sub>int</sub> = 0.0450)                                                         |
| Reflections with I > $2\sigma$ (I)              | 5203                                                                                     |
| Data / retraints / parameter                    | 6974 / 132 / 324                                                                         |
| Goodness-of-fit on F <sup>2</sup>               | 1.090                                                                                    |
| Weighting details                               | $\omega = 1/[\sigma^2(F_0^2) + (0.0475P)^2 + 1.6161P]$<br>where P = $(F_0^2 + 2F_c^2)/3$ |
| R indices $[I > 2\sigma (I)]$                   | R1 = 0.0538<br>$\omega R2 = 0.1364$                                                      |
| R indices [all data]                            | R1 = 0.0739<br>$\omega R2 = 0.1459$                                                      |
| Largest diff. peak and hole                     | 0.585 and –0.309 Å <sup>-3</sup>                                                         |

**Tab. S5:** Overview on intermolecular contacts in 1-4.

|    | Compound                        | Н…Н      | H···F                 | F…F                | С-Н…О   |             |
|----|---------------------------------|----------|-----------------------|--------------------|---------|-------------|
|    | Fe(acac) <sub>2</sub> (TMEDA)   | 2.226    |                       |                    | 2.623   |             |
|    | Ni(acac) <sub>2</sub> (TMEDA)   | 2.274    |                       |                    |         |             |
|    |                                 | 2.262    |                       |                    |         |             |
|    |                                 | 2.312    |                       |                    |         |             |
|    |                                 | 2.045    |                       |                    |         |             |
|    |                                 | 2.312    |                       |                    |         |             |
|    | Zn(acac) <sub>2</sub> (TMEDA)   | 2.311    |                       |                    |         |             |
|    |                                 | 2.394    |                       |                    |         |             |
|    |                                 | 2.381    |                       |                    |         |             |
|    | Fe(tfac) <sub>2</sub> (TMEDA) 1 |          | 2.059                 |                    |         |             |
|    |                                 |          | 2.268                 |                    |         |             |
|    | Ni(tfac) <sub>2</sub> (TMEDA) 2 | 2.386    | 2.608                 | 2.768              |         |             |
|    |                                 |          | 2.633                 |                    |         |             |
|    |                                 |          | 2.622                 |                    |         |             |
|    | Cu(tfac) <sub>2</sub> (TMEDA) 3 | 2.352    | 2.452                 |                    | N       |             |
| b  |                                 |          | 2.625                 |                    | I       |             |
|    |                                 |          | 2.567 <sub>acet</sub> | one-d <sub>6</sub> | 74 -    |             |
|    |                                 |          | 2.601                 |                    | F3C O O |             |
|    | Zn(tfac) <sub>2</sub> (TMEDA) 4 |          |                       |                    |         |             |
| с  | Fe(hfac) <sub>2</sub> (TMEDA)   |          | 2.658                 | 2.816              |         |             |
|    | Ni(hfac) <sub>2</sub> (TMEDA)   |          | 2.586                 | 2.764              |         |             |
|    | Cu(hfac) <sub>2</sub> (TMEDA)   |          | 2.476                 |                    |         |             |
|    |                                 |          | 2.596                 |                    |         |             |
| С  |                                 |          | 2.629                 |                    | ŢŢ      |             |
|    |                                 |          | 2.653                 |                    |         |             |
|    | Zn(hfac) <sub>2</sub> (TMEDA)   |          | 2.540                 | 2.928              |         |             |
|    |                                 |          | 2.656                 |                    |         |             |
| а  |                                 | $\frown$ | 2.577                 | ~                  |         |             |
|    | 1 1 1                           | 1 1      | 2.575                 |                    | 1 1 1   |             |
| iσ |                                 |          | 2.613                 |                    |         | <b>S1</b> : |

<sup>1</sup>H-NMR of the black residue after heating **3** at 120 °C for 3 h under inert conditions at atmospheric pressure. (a). The comparison with the spectrum of **3** (b) shows the complete degradation of the starting material. Further comparison with the spectra of Cu(tfac)<sub>2</sub> (c) and TMEDA (d) excludes the loss of TMEDA as decomposing pathway. All spectra were recorded in aceton-d<sub>6</sub>.



Fig. S2: ATR-IR spectrum of Fe(acac)<sub>2</sub>(TMEDA).



**Fig. S3:** ATR-IR spectrum of Fe(tfac)<sub>2</sub>(TMEDA) **2**.



Fig. S4: ATR-IR spectrum of Fe(hfac)<sub>2</sub>(TMEDA).



Fig. S5: ATR-IR spectrum of Ni(acac)<sub>2</sub>(TMEDA).



Fig. S6: ATR-IR spectrum of Ni(tfac)<sub>2</sub>(TMEDA) 2.



**Fig. S7:** ATR-IR spectrum of Ni(hfac)<sub>2</sub>(TMEDA).



Fig. S8: ATR-IR spectrum of Cu(tfac)<sub>2</sub>(TMEDA) 3.



Fig. S9: ATR-IR spectrum of Cu(hfac)<sub>2</sub>(TMEDA).



Fig. S10: ATR-IR spectrum of Zn(acac)<sub>2</sub>(TMEDA).



**Fig. S11:** ATR-IR spectrum of Zn(tfac)<sub>2</sub>(TMEDA) **4**.



Fig. S12: ATR-IR spectrum of Zn(hfac)<sub>2</sub>(TMEDA).



**Fig. S13:** Isothermal TGA curves (125 °C) for  $M(acac)_2$ ,  $M(acac)_2$ (TMEDA),  $M(tfac)_2$ (TMEDA) and  $M(hfac)_2$ (TMEDA) (M = Fe (a), Ni (b), Cu (c) and Zn (d)).

For the PXRD analysis of **1-4**, crystalline samples were grinded and measured with  $Cu-K\alpha$  radiation. Theoretical X-ray pattern were calculated from the crystal structures using the Mercury software (Version 4.2.0, Cambridge Crystallographic Data Centre) and displayed as vertical red and blue bars. While for **1** a mixture of two polymorphic structures was observed, good agreements were found between the calculated and the experimental X-ray pattern for **2-4**, excluding the presence of polymorphs.



**Fig. S14:** PXRD of **1**. Calculated position of the reflections from the crystal structure as vertical bars. **1** (red) and Fe(tfac)<sub>2</sub>(TMEDA)<sup>[1]</sup> (blue).

[1] M. Klotzsche, D. Barreca, L. Bigiani, R. Seraglia, A. Gasparotto, L. Vanin, C. Jandl, A. Pöthig, M. Roverso, S. Bogialli, G. Tabacchi, E. Fois, E. Callone, S. Dirèe, C. Maccato, Dalton. Trans.; 2021, 50, 10374–10385.



**Fig. S15:** PXRD of **2**. Calculated position of the reflections from the crystal structure as vertical bars.



**Fig. S16:** PXRD of **3**. Calculated position of the reflections from the crystal structure as vertical bars.



**Fig. S17:** PXRD of **4**. Calculated position of the reflections from the crystal structure as vertical bars.

| sample | precursor                     | evaporation | deposition  | deposition | deposition | substrate                             |
|--------|-------------------------------|-------------|-------------|------------|------------|---------------------------------------|
| name   |                               | temperature | temperature | pressure   | time       |                                       |
|        |                               | [°C]        | [°C]        | [mbar]     | [min]      |                                       |
| 1_AI   | Fe(tfac) <sub>2</sub> (TMEDA) | 100         | 500         | 0.35       | 20         | Al <sub>2</sub> O <sub>3</sub> (0001) |
| 1_Si   | Fe(tfac) <sub>2</sub> (TMEDA) | 100         | 300-500     | 0.35       | 20         | Si (100)                              |
| 2_AI   | Ni(tfac) <sub>2</sub> (TMEDA) | 100         | 500         | 0.35       | 20         | Al <sub>2</sub> O <sub>3</sub> (0001) |
| 2_Si   | Ni(tfac) <sub>2</sub> (TMEDA) | 100         | 300-500     | 0.35       | 20         | Si (100)                              |
| 3_AI   | Cu(tfac) <sub>2</sub> (TMEDA) | 100         | 500         | 0.35       | 20         | Al <sub>2</sub> O <sub>3</sub> (0001) |
| 3_Si   | Cu(tfac) <sub>2</sub> (TMEDA) | 100         | 300-500     | 0.35       | 20         | Si (100))                             |
| 4_Si   | Zn(tfac) <sub>2</sub> (TMEDA) | 100         | 500         | 0.35       | 20         | Al <sub>2</sub> O <sub>3</sub> (0001) |
| 4_Si   | Zn(tfac) <sub>2</sub> (TMEDA) | 100         | 300-500     | 0.35       | 20         | Si (100)                              |

Tab. S6: Experimental conditions.



**Fig. S18:** 3D model of the reactor used in this paper. Side view (left) and front view with cross section (right). Gas supply system and vacuum system are not shown.



Fig. S19: SEM of 1\_Si at 300 °C (a), 400 °C (b) and 500 °C (c).



Fig. S20: SEM of 2\_Si at 300 °C (a), 400 °C (b) and 500 °C (c).



**Fig. S21:** SEM of **3\_Si** at 300 °C (a), 400 °C (b) and 500 °C (c).



**Fig. S22:** SEM of **4\_Si** at 300 °C (a), 400 °C (b) and 500 °C (c).



Fig. S23: EDX spectrum of 1\_AI.



Fig. S24: EDX spectrum of 2\_AI.



Fig. S25: EDX spectrum of 3\_AI.



Fig. S26: EDX spectrum of 4\_AI.



Fig. S27: XRD of **1\_Si**.



Fig. S28: XRD of 2\_Si.



Fig. S29: XRD of 3\_Si.



Fig. S30: XRD of 4\_Si.



Fig. S31: SEM image of 1\_Al.



Fig. S32: Cross section SEM image of 1\_AI.



Fig. S33: SEM image of 2\_AI.



Fig. S34: Cross section SEM image of 2\_AI.



Fig. S35: SEM image of 3\_AI.



Fig. S36: Cross section SEM image of 3\_AI.



Fig. S37: SEM image of 4\_AI.



Fig. S38: Cross section SEM image of 4\_AI.



Fig. S39: XPS of 1\_AI. Survey (a), Fe 2p (b), O 1s (c) and C 1s (d).



Fig. S40: XPS of 1\_AI after calcination. Survey (a), Fe 2p (b), O 1s (c) and C 1s (d).



Fig. S41: XPS of 2\_AI. Survey (a), Ni 2p (b), O 1s (c) and C 1s (d).



Fig. S42: XPS of 2\_AI after calcination. Survey (a), Ni 2p (b), O 1s (c) and C 1s (d).



Fig. S43: XPS of 3\_AI. Survey (a), Cu 2p (b), O 1s (c) and C 1s (d).



Fig. S44: XPS of 3\_AI after calcination. Survey (a), Cu 2p (b), O 1s (c) and C 1s (d).



Fig. S45: Cu LMM spectra of 3\_AI before and after calcination.

| Fab. S7: Calculation of the mc | d. Auger parameter for <b>3_AI</b> |
|--------------------------------|------------------------------------|
|--------------------------------|------------------------------------|

|           | Cu 2p <sub>3/2</sub> (eV) | Zn LMM (eV) | Mod. Auger parameter<br>(eV) | Mod. Auger parameter<br>(eV)<br>Reference <sup>[2]</sup> |  |
|-----------|---------------------------|-------------|------------------------------|----------------------------------------------------------|--|
| 3_AI      | 933.0                     | 916.4       | 1849.4                       | 1849.2 (Cu <sub>2</sub> O)                               |  |
| 3_Al_calc | 933.7                     | 917.6       | 1851.3                       | 1851.3 (CuO)                                             |  |
|           |                           |             |                              |                                                          |  |

[2] M. C. Biesinger, Surf. Interface Anal., 2017, 49, 1325–1334.



Fig. S46: XPS of 4\_AI. Survey (a), Zn 2p (b), O 1s (c) and C 1s (d).



Fig. S47: XPS of 4\_AI after calcination. Survey (a), Zn 2p (b), O 1s (c) and C 1s (d).



Fig. S48: Zn LMM spectra of 4\_AI before and after calcination.

| Tab. S8: Calculation | of the mod. | Auger parameter | for <b>3_Al</b> |
|----------------------|-------------|-----------------|-----------------|
|                      |             |                 |                 |

|           | Zn 2p <sub>3/2</sub> (eV) | Zn LMM (eV) | Mod. Auger parameter<br>(eV) | Mod. Auger parameter<br>(eV)<br>Reference <sup>[3]</sup> |
|-----------|---------------------------|-------------|------------------------------|----------------------------------------------------------|
| 4_AI      | 1021.9                    | 988.0       | 2009.9                       | 2010.4 (ZnO)                                             |
| 4_Al_calc | 1021.7                    | 988.3       | 2010.0                       | 2010.4 (ZnO)                                             |

[3] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2010, 257, 887–898.