Electronic Supplementary Information (ESI)

Self-assembled sonogels formed from 1,4-

naphthalenedicarbonyldinicotinic acid hydrazide

Lieqiang Liao,[‡] Ruidong Liu,[‡] Shuwen Hu, Wenting Jiang, Yali Chen, Jinlian Zhong, Xinjian Jia,* Huijin Liu* and Xuzhong Luo*

^a Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College

of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.

E-mail: jiaxinjian.love@163.com; chemlhj@163.com; luoxuzhong@hotmail.com

‡ These authors contributed equally to this work.

Table of Contents

Table of
Contents1
1. Experimental Section
1.1 Synthesis
Scheme S1 Synthetic routes for compounds used in this work
Fig. S1 ¹ H NMR and ¹³ C NMR spectra of NDC-NN3 in DMSO- <i>d</i> 65
Fig. S2 ¹ H NMR and ¹³ C NMR spectra of NDC-NNpH in DMSO-d6
Fig. S3 ¹ H NMR and ¹³ C NMR spectra of NDC-NN4/NDC-NN2 in DMSO-d67
Fig. S4 ¹ H NMR and ¹³ C NMR spectra of NDC-N3/NDC-N4 in DMSO-d67
Table S1 Gelation behavior of NDC-NN3, NDC-NN4 and NDC-NN2 under
sonication in various solvents
Table S2 Gelation behavior of NDC-NNpH, NDC-N3 and NDC-N4 under sonication
in various solvents
Fig. S5 Photographs of NDC-NN3 gels formed under ultrasonic irradiation in various
solvents at 10 mg·mL ⁻¹ 10
Table S3 Gelation behavior of NDC-NN3 upon different ultrasonic time in ethanol,
THF and 1, 4-dioxane with various concentrations11
Fig. S6 Images of NDC-NN3 gels formed under ultrasonic irradiation in ethanol at
different concentrations12
Fig. S7 Schematic diagrams of the reversible sol-gel transition processes for NDC-
NN3 in different solvents (10 mg·mL ⁻¹) under stirring and sonication13
Fig. S8 HPLC chromatogram of gelator NDC-NN314
Fig. S9 ¹ H NMR spectra of NDC-NN3 before and after sonication15
Fig. S10 ¹³ C NMR spectra of NDC-NN3 before and after sonication15
Fig. S11 Moduli variations of NDC-NN3 sonogels with increasing temperature16
Fig. S12 SEM images of NDC-NN3 aggregates in dried sonogels formed in different
solvents17
Table S4 Transformation of gel-crystal for NDC-NN3 in various
solvents18
Fig. S13 Images of NDC-NN3 aggregates in sonogel (ethanol, 20 mg·mL ⁻¹) aged at
room temperature
Fig. S14 SA-XRD patterns of NDC-NN3 sonogel
Table S5 Crystal data and structure refinement for NDC-NN3
Table S6 Selected bond lengths (Å) and angles (°) for NDC-NN3 crystal22
Fig. S15 CPK space-filling model of NDC-NN325
Fig. S16 FT-IR spectra of NDC-NN3 crystal and
xerogels
Fig. S17 Variable-time ¹ H NMR spectra of NDC-NN3 sonogel (ethanol-d6, 20
$mg \cdot mL^{-1}$)

Fig. S18 Schematic representation of the possible local aggreg	ation for NDC-NN3 in
sonogels	
2. References	

1. Experimental Section

1.1 Synthesis

The compound 1,4-naphthalenedicarbonyldinicotinic acid hydrazide (NDC-NN3) was prepared according to the literature method.¹ The compounds of 1,4acid naphthalenedicarbonyldiisonicotinic hydrazide (NDC-NN4), 1,4naphthalenedicarbonyldipyridine-2-carboxylic acid hydrazide (NDC-NN2), 1,4naphthalenedicarbonyldibenzoic acid hydrazide (NDC-NNpH), N¹,N⁴-di(pyridin-3-N¹,N⁴-di(pyridin-4-yl)yl)-naphthalene-1,4-dicarboxamide (NDC-N3) and naphthalene-1,4-dicarboxamide (NDC-N4) were prepared similar to NDC-NN3. In a typical experiment, 1,4-Naphthalenedicarbonyl dichloride was prepared from 1,4-Naphthalenedicarboxylic acid by treatment with SOCl₂ using a catalytic amount of DMF. Subsequently, a DCM (100mL) solution of naphthalene-1,4-dicarbonyl dichloride (2.53 g, 10.0 mmol) was then added dropwise to a DCM (100mL) solution of nicotinic acid hydrazide (2.88 g, 21.0 mmol) and triethylamine (3.0 mL, 29.6 mmol) with continuous stirring in an ice bath. After stirring for 24h, the pale yellow precipitate was filtered and washed with DCM for four times. The product was recrystallized from a mixed solvent of H₂O (300 mL) and ethanol (100 mL), and then dried under vacuum to afford 3.7 g of NDC-NN3 (yield 70%). The compounds prepared in this work were characterized by FT-IR, ¹H NMR, ¹³C NMR and LC-MS.

1,4-naphthalenedicarbonyldinicotinic acid hydrazide (NDC-NN3)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 10.92 (2H, s), 10.71 (2H, s), 9.14 (2H, *J* = 1.6 Hz, d), 8.81 (1 H, *J* = 4.8, 1.7 Hz, dd), 8.48 (2H, *J* = 6.5, 3.3 Hz, dd), 8.39 – 8.31 (2H, m), 7.78 (2H, s), 7.72 (2H, *J* = 6.5, 3.3 Hz, dd), 7.62 (2H, *J* = 7.9, 4.8 Hz, dd). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 168.15, 165.04, 153.15, 148.97, 135.83, 135.34, 130.49, 128.53, 127.89, 126.20, 125.04, 124.30. IR (KBr): 3234, 1658, 1594, 1515, 1474, 1421, 1293, 1261, 1172, 1140, 1028, 907, 825, 772, 705, 485 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₇H₁₃N₅O₂ : m/z 454.1389; found: 455.1476.

1,4-naphthalenedicarbonyldiisonicotinic acid hydrazide (NDC-NN4)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 11.02 (2H, s), 10.74 (2H, s), 8.88 – 8.81 (4H, m), 8.47 (2H, *J* = 6.5, 3.3 Hz, dd), 7.90 (4H, *J* = 4.4, 1.6 Hz, dd), 7.78 (2H, s), 7.73 (2H, *J* = 6.5, 3.3 Hz, dd). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 168.07, 164.91, 151.04, 139.84, 135.30, 130.49, 127.93, 126.19, 125.07, 121.89. IR (KBr): 3425, 3177, 1661, 1603, 1553, 1515, 1410, 1293, 1259, 1141, 1064, 846, 778, 675, 469 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₇H₁₃N₅O₂ : m/z 454.1389; found: 455.1475.

Scheme S1. Synthetic routes for gelators (NDC-NN3, NDC-NN4, NDC-NN2, NDC-NNpH, NDC-N3 and NDC-N4) in this work

1,4-naphthalenedicarbonyldipyridine-2-carboxylic acid hydrazide (NDC-NN2)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 10.85 (2H, s), 10.66 (2H, s), 8.75 (2H, *J* = 4.6 Hz, d), 8.49 (2H, *J* = 6.5, 3.3 Hz, dd), 8.15 (2H, *J* = 7.7 Hz, d), 8.09 (1 H, *J* = 7.6, 1.7 Hz, td), 7.75 (2H, s), 7.73 – 7.65 (4H, m). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 167.79, 163.85, 149.67, 149.23, 138.41, 135.46, 130.53, 127.66, 127.60, 126.34, 124.93, 123.98. IR (KBr): 3381, 3260, 1677, 1651, 1590, 1571, 1490, 1431, 1283, 1242, 1140, 1040, 858, 816, 747, 620 cm⁻¹. [M+H]⁺ calculated for C₁₇H₁₃N₅O₂ : m/z 454.1389; found: 455.1464.

1,4-naphthalenedicarbonyldibenzoic acid hydrazide (NDC-NNpH)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 10.73 (2H, s), 10.64 (2H, s), 8.51 (2H, *J* = 6.5, 3.3 Hz, dd), 8.07 – 7.95 (4H, m), 7.78 (2H, s), 7.73 (2H, *J* = 6.5, 3.3 Hz, dd), 7.68 – 7.61 (2H, m), 7.57 (4H, *J* = 11.4, 4.4 Hz, dd). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 168.20, 166.33, 135.50, 132.86, 132.49, 130.53, 129.07, 128.01, 127.77, 126.28, 124.98. IR (KBr): 3424, 3179, 1655, 1601, 1575, 1545, 1473, 1287, 1258, 1076, 710, 477 cm⁻¹. [M+Na]⁺ calculated for C₂₆H₂₀N₄O₄ : m/z 452.1485; found: 475.1378.

N¹,N⁴-di(pyridin-3-yl)-naphthalene-1,4-dicarboxamide (NDC-N3)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$): 10.88 (2H, s), 8.97 (2H, *J* = 2.1 Hz, d), 8.37 (2H, *J* = 4.7, 1.2 Hz, dd), 8.32 – 8.21 (4H, m), 7.90 (2H, s), 7.70 (2H, *J* = 6.5, 3.3 Hz, dd), 7.46 (2H, *J* = 8.3, 4.7 Hz, dd). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 167.72, 145.31, 142.03, 136.74, 136.27, 130.22, 127.45, 126.05, 125.09, 124.22. IR (KBr): 3424, 3238, 1674, 1652, 1600, 1546, 1479, 1426, 1331, 1310, 1271, 880, 836, 793, 770, 705, 627, 473 cm⁻¹. LC-MS [M+H]⁺ calculated for C₁₇H₁₃N₅O₂ : m/z 368.1273; found: 369.1357.

N¹,N⁴-di(pyridin-4-yl)-naphthalene-1,4-dicarboxamide (NDC-N4)

¹H NMR (400MHz, DMSO-*d*6, $\delta_{\rm H}$):11.08 (2H, s), 8.54 (4H, *J* = 4.8, 1.5 Hz, dd), 8.23 (1H, *J* = 6.5, 3.3 Hz, dd), 7.90 (1H, s), 7.80 (2H, dd, *J* = 4.9, 1.4 Hz, dd), 7.71 (1H, *J* = 6.5, 3.3 Hz, dd). ¹³C NMR (100MHz, DMSO-*d*6, $\delta_{\rm C}$): 168.17, 150.95, 146.17, 136.64, 130.08, 128.17, 125.92, 125.14, 114.28. IR (KBr): 3291, 3225, 3153, 3062, 2967, 2926, 1685, 1594, 1514, 1418, 1331, 1301, 1252, 1208, 1181, 1146, 1029, 996, 886, 829,768 cm⁻¹. LC-MS [M+H]⁺ calculated for C₂₂H₁₆N₄O₂ : m/z 368.1273; found: 369.1346.

Fig. S1. ¹H NMR and ¹³C NMR spectra of NDC-NN3 in DMSO-d6

Fig. S2. ¹H NMR and ¹³C NMR spectra of NDC-NNpH in DMSO-d6

Fig. S3. ¹H NMR and ¹³C NMR spectra of NDC-NN4/NDC-NN2 in DMSO-d6

Fig. S4 ¹H NMR and ¹³C NMR spectra of NDC-N3/NDC-N4 in DMSO-d6

	6 I 4		Compounds	
	Solvents	NDC-NN3	NDC-NN4	NDC-NN2
1	Methanol	S (S)	S (S)	P (P)
2	Ethanol	G (S)	S (S)	P (P)
3	<i>n</i> -Propanol	G (S)	S (S)	I (I)
4	<i>n</i> -Butanol	G (S)	S (S)	I (I)
5	<i>n</i> -Pentanol	G (S)	S (S)	P (P)
6	THF	G (S)	S (S)	S (S)
7	1,4-Dioxane	G (S)	S (S)	P (P)
8	Ethylene glycol	S (S)	S (S)	P (S)
9	H_2O	I (I)	I (I)	I (I)
10	DMSO	S (S)	S (S)	S (S)
11	DMF	S (S)	S (S)	S (S)
12	Aminobenzene	S (S)	S (S)	S (S)
13	Acetonitrile	I (I)	S (S)	I (I)
14	Pyridine	S (S)	S (S)	S (S)
15	Acetone	I (I)	S (S)	P (P)
16	CHCl ₃	I (I)	I (I)	P (P)
17	Ethyl acetate	I (I)	I (I)	I (I)
18	Tetralin	P (P)	I (I)	I (I)
19	<i>n</i> -Butyl acetate	I (I)	I (I)	I (I)
20	CH_2Cl_2	P (P)	I (I)	I (I)
21	Benzene	P (P)	I (I)	I (I)
22	Ethyl ether	I (I)	I (I)	I (I)
23	o-Dichlorobenzene	I (I)	I (I)	I (I)
24	Chlorobenzene	I (I)	I (I)	I (I)
25	Mesitylene	I (I)	I (I)	I (I)
26	<i>p</i> -Xylene	I (I)	I (I)	I (I)
27	Toluene	I (I)	I (I)	I (I)
28	Isopropyl ether	I (I)	I (I)	I (I)
29	CCl_4	I (I)	I (I)	I (I)
30	Cyclohexane	I (I)	I (I)	I (I)
31	Hexane	I (I)	I (I)	I (I)
32	Petroleum ether	I (I)	I (I)	I (I)

 Table S1. Gelation behavior of NDC-NN3, NDC-NN4 and NDC-NN2 under sonication in various solvents

* G = gel; S = solution; P = precipitate; I = insoluble. Glass vials containing compounds and solvents were heated and then cooled to room temperature. Subsequently, the mixed solutions were sonicated (40 KHz, 0.40 W·cm⁻²) in deionized water for a certain time. After standing at room temperature for 24 h without sonication, the values in parentheses were recorded.

	S - J 4		Compounds	
	Solvents	NDC-NNpH	NDC-N3	NDC-N4
1	Methanol	P (S)	P (P)	P (S)
2	Ethanol	I (I)	P (P)	P (S)
3	<i>n</i> -Propanol	I (I)	I (I)	P (S)
4	<i>n</i> -Butanol	I (I)	I (I)	I (I)
5	<i>n</i> -Pentanol	I (I)	I (I)	I (I)
6	THF	I (I)	I (I)	I (I)
7	1,4-Dioxane	I (I)	I (I)	I (I)
8	Ethylene glycol	P (S)	P (P)	I (S)
9	H_2O	I (I)	I (I)	I (I)
10	DMSO	S (S)	S (S)	P (S)
11	DMF	S (S)	S (S)	P (S)
12	Aminobenzene	S (S)	S (S)	P (S)
13	Acetonitrile	I (I)	I (I)	I (I)
14	Pyridine	I (I)	I (I)	I (I)
15	Acetone	I (I)	I (I)	I (I)
16	CHCl ₃	I (I)	I (I)	I (I)
17	Ethyl acetate	I (I)	I (I)	I (I)
18	Tetralin	I (I)	I (I)	I (I)
19	<i>n</i> -Butyl acetate	I (I)	I (I)	I (I)
20	CH_2Cl_2	I (I)	I (I)	I (I)
21	Benzene	I (I)	I (I)	I (I)
22	Ethyl ether	I (I)	I (I)	I (I)
23	o-Dichlorobenzene	I (I)	I (I)	I (I)
24	Chlorobenzene	I (I)	I (I)	I (I)
25	Mesitylene	I (I)	I (I)	I (I)
26	<i>p</i> -Xylene	I (I)	I (I)	I (I)
27	Toluene	I (I)	I (I)	I (I)
28	Isopropyl ether	I (I)	I (I)	I (I)
29	CCl_4	I (I)	I (I)	I (I)
30	Cyclohexane	I (I)	I (I)	I (I)
31	Hexane	I (I)	I (I)	I (I)
32	Petroleum ether	I (I)	I (I)	I (I)

Table S2. Gelation behavior of NDC-NNpH, NDC-N3 and NDC-N4 under sonication

 in various solvents

* G = gel; S = solution; P = precipitate; I = insoluble. Glass vials containing compounds and solvents were heated and then cooled to room temperature. Subsequently, the mixed solutions were sonicated (40 KHz, 0.40 W \cdot cm⁻²) in deionized water for a certain time. After standing at room temperature for 24 h without sonication, the values in parentheses were recorded.

Fig. S5. Photographs of NDC-NN3 gels formed under ultrasonic irradiation in various solvents at $10 \text{ mg} \cdot \text{mL}^{-1}$

Salwanta	C _{NDC-NN3}	Ultrasonic times / min										
Solvents	mg∙mL ⁻¹	1	2	5	10	15	20	25	30	40	60	120
	6	S	S	S	S	S	S	S	S	S	S	S
	8	S	S	S	S	S	S	S	S	S	S	TS
Ethanol	10	S	S	S	S	S	S	S	S	TS	G	G
	20	S	S	S	TS	TS	G	G	G	G	G	G
	30	S	TS	TS	G	G	G	G	G	G	G	G
	40	TS	TS	G	G	G	G	G	G	G	G	G
	45	Ι	/	/	/	/	/	/	/	/	/	/
	2	S	S	S	S	S	S	S	S	S	S	S
	4	S	S	S	S	S	S	S	S	S	S	S
THE	6	S	S	S	S	S	S	S	S	S	S	TS
IHF	8	S	S	S	S	S	S	S	TS	TS	G	G
	10	S	S	S	TS	TS	TS	TS	G	G	G	G
	15	Ι	/	/	/	/	/	/	/	/	/	/
	2	S	S	S	S	S	S	S	S	S	S	S
	4	S	S	S	S	S	Р	TS	TS	TS	TS	TS
1 1 Diavana	6	S	S	S	TS	TS	G	G	G	G	G	G
1,4-Dioxaile	8	S	S	TS	G	G	G	G	G	G	G	G
	10	S	TS	G	G	G	G	G	G	G	G	G
	15	Ι	/	/	/	/	/	/	/	/	/	/
	4	S	S	S	S	S	S	S	S	S	S	S
	6	S	S	S	S	S	S	S	S	S	S	TS
n_Pronanal	8	S	S	S	S	S	S	S	S	TS	TS	G
	10	S	S	S	S	S	S	S	S	TS	G	G
	15	S	S	S	TS	TS	TS	TS	G	G	G	G
	20	Ι	/	/	/	/	/	/	/	/	/	/

Table S3. Gelation behavior of NDC-NN3 upon different ultrasonic time in ethanol,THF and 1, 4-dioxane with various concentrations

	2	S	S	S	S	S	S	S	S	S	S	S
	4	S	S	S	S	S	S	S	S	S	TS	TS
	6	S	S	S	S	S	TS	TS	G	G	G	G
<i>n</i> -Dutanoi	8	S	S	S	S	TS	TS	G	G	G	G	G
	10	S	S	TS	TS	TS	G	G	G	G	G	G
	15	Ι	/	/	/	/	/	/	/	/	/	/
	2	S	S	S	S	S	S	S	S	S	S	S
	2 4	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S
r Pontonol	2 4 6	S S S	S S S	S S S	S S S	S S S	S S S	S S S	S S S	S S S	S S S	S S TS
<i>n</i> -Pentanol	2 4 6 8	S S S S	S S S	S S S S	S S S S	S S S S	S S S S	S S S S	S S S S	S S S TS	S S S TS	S S TS G
<i>n</i> -Pentanol	2 4 6 8 10	S S S S	S S S S	S S S S	S S S S	S S S S	S S S S TS	S S S TS	S S S S TS	S S S TS TS	S S S TS G	S S TS G G

* G = gel; I = insoluble partially; S = solution; TS = turbid solution.

Fig. S6. Images of NDC-NN3 sonogels formed under ultrasonic irradiation in ethanol at different concentrations

Fig. S7. Schematic diagrams of the reversible sol-gel transition processes for NDC-NN3 in different solvents (10 mg·mL⁻¹) under stirring and sonication: (a) ethanol; (b) THF; (c) 1,4-dioxane; (d) n-propanol; (e) n-butanol; (f) n-pentanol

Fig. S8. HPLC chromatogram of gelator NDC-NN3: (a) after and (b) before formation of sonogel with CH_3OH as solution

Fig. S9. ¹H NMR spectra of NDC-NN3 before and after sonication

Fig. S10. ¹³C NMR spectra of NDC-NN3 before and after sonication

Fig. S11. Moduli variations of NDC-NN3 sonogels (10 mg·mL⁻¹) with increasing temperature: (a) ethanol and (b) 1,4-dioxane as solutions, respectively

Fig. S12. SEM images of NDC-NN3 aggregates in dried sonogels formed in different solvents: (a,b) *n*-propanol; (c,d) *n*-butanol; (e,f) *n*-pentanol

Colverte	C _{PDA-N4}	Time / Days											
Solvents	mg∙mL ⁻¹	1D	2D	5D	10D	15D	30D	60D	90D				
	10	G	G	G	G	G+C	G+C	С	С				
	20	G	G	G	G+C	G+C	С	С	С				
Ethanoi	30	G	G	G+C	G+C	С	С	С	С				
	40	G+C	G+C	G+C	G+C	С	С	С	С				
THE	8	G	G	G	G	G	G	G	G				
THF	10	G	G	G	G	G	G	G	G				
	6	G	G	G	G	G	G	G	G				
1,4-Dioxane	8	G	G	G	G	G	G	G	G				
	10	G	G	G	G	G	G	G	G				
	8	G	G	G	G	G	G	G	G				
<i>n</i> -Propanol	10	G	G	G	G	G	G	G	G				
	15	G	G	G	G	G	G	G	G				
	6	G	G	G	G	G	G	G	G				
<i>n</i> -Butanol	8	G	G	G	G	G	G	G	G				
	10	G	G	G	G	G	G	G	G				
n Dontonal	8	G	G	G	G	G	G	G	G				
<i>n</i> -rentanol	10	G	G	G	G	G	G	G	G				

Table S4. Transformation of gel-crystal for NDC-NN3 in various solvents

* G = gel; C = crystal.

Fig. S13. Images of NDC-NN3 aggregates in sonogel (ethanol, 20 mg·mL⁻¹) aged at room temperature for (a) 0 day, (b) 10 days and (c) 30 days

Fig. S14. SA-XRD patterns of NDC-NN3 sonogel (ethanol, 20 mg·mL⁻¹) aged at 25 °C for (a) 0 day, (b) 10 days and (c) 30 days (the simulated XRD pattern from the NDC-NN3 crystal data)

Compound	NDC-NN3
Formula	$C_{102}H_{102}N_{24}O_{25}$
F.w.	2064.07
<i>T</i> (K)	100.01(10)
Crystal system	Monoclinic
Space group	P21/n
<i>a</i> (Å)	8.0569(2)
<i>b</i> (Å)	36.1507(7)
<i>c</i> (Å)	8.9337(2)
α (°)	90
$eta(\degree)$	90.440(2)
γ (°)	90
$V(Å^3)$	2601.98(10)
Ζ	1
$Dc (g/cm^3)$	1.317
μ (mm ⁻¹)	0.807
R _{int}	0.0782
GOF	1.050
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]	0.1023, 0.2832
R1, wR2 (all data)	0.1123, 0.2949

 Table S5. Crystal data and structure refinement for NDC-NN3

O4—C2	1.236(4)	N2—H2	0.8800
N6—C5	1.352(4)	N2—C20	1.376(7)
N6—C9	1.331(5)	N2—N1	1.377(5)
C2—N4	1.338(4)	C15—C18	1.373(6)
C2—C4	0.8800	C15—C20	1.507(5)
N3—N4	1.395(4)	C16—H16	0.9500
N3—C7	1.354(4)	C16—C17	1.411(6)
N4—H4	0.8800	C17—H17	0.9500
O3—C7	1.220(4)	C18—H18	0.9500
С3—НЗА	0.9500	C19—N1	1.327(6)
C3—C4	1.386(5)	C19—C21	1.499(6)
С3—С6	1.388(5)	N1—H1	0.8800
C4—C5	1.384(5)	C21—C22	1.402(7)
С5—Н5	0.9500	C21—C25	1.371(7)
С6—Н6	0.9500	C22—H22	0.9500
С6—С9	1.378(5)	C22—N5	1.327(6)
C7—C11	1.509(4)	N5—C26	1.316(8)
C8—C10	1.435(5)	C24—H24	0.9500
C8—C11	1.428(5)	C24—C25	1.423(8)
C8—C12	1.406(6)	C24—C26	1.354(10)
С9—Н9	0.9500	С25—Н25	0.9500
C10—C14	1.438(6)	O5—H5A	0.8698
C10—C15	1.411(6)	O5—H5B	0.8707
C11—C13	1.353(6)	O8—H8	0.8400
O2—C20	1.221(6)	O8—C27	1.353(9)
O1—C19	1.312(5)	O6—H6A	0.8707
C12—H12	0.9500	O6—H6B	0.8698
C12—C16	1.373(6)	C27—H27A	0.9900

Table S6. Selected bond lengths (Å) and angles (°) for NDC-NN3 crystal

C13—H13	0.9500	С27—Н27В	0.9900
C13—C18	1.422(5)	C27—C28	1.518(11)
C14—H14	0.9500	C28—H28A	0.9800
C14—C17	1.351(7)	C28—H28B	0.9800
C9—N6—C5	117.2(3)	N1—N2—H2	120.1
O4—C2—N4	123.7(3)	C10—C15—C20	119.2(4)
O4—C2—C4	121.8(3)	C18—C15—C10	121.9(3)
N4—C2—C4	114.5(3)	C18—C15—C20	118.7(4)
N4—N3—H3	121.2	C12—C16—H16	120.0
C7—N3—H3	121.2	C12—C16—C17	120.1(4)
C7—N3—N4	117.5(3)	C17—C16—H16	120.0
C2—N4—N3	120.6(3)	C14—C17—C16	120.1(4)
C9—N6—C5	117.2(3)	C14—C17—H17	120.0
C2—N4—H3	119.7	C16—C17—H17	120.0
N3—N4—H4	119.7	C13—C18—H18	120.3
C4—C3—H3A	120.8	C15—C18—C13	119.5(4)
C4—C3—C6	118.4(3)	C15—C18—H18	120.3
С6—С3—НЗА	120.8	N1—C19—C21	116.3(4)
C3—C4—C2	123.9(3)	N2—C20—C15	112.5(4)
C5—C4—C2	117.3(3)	N2—N1—H1	119.4
C5—C4—C3	118.7(3)	C19—N1—N2	121.3(4)
N6—C5—C4	123.1(3)	C19—N1—H1	119.4
N6—C5—C4	118.5	C22—C21—C19	123.7(4)
C4—C5—H5	118.5	C25—C21—C19	119.5(5)
С3—С6—Н6	120.5	C25—C21—C22	116.8(4)
C9—C6—C3	119.0(3)	C21—C22—H22	117.0
С9—С6—Н6	120.5	N5—C22—C21	126.0(5)
N3—C7—C11	113.3(3)	N5—C22—H22	117.0

O3—C7—N3	123.7(3)	C26—N5—C22	115.4(5)
O3—C7—C11	122.9(3)	C25—C24—H24	120.6
C11—C8—C10	118.4(4)	C26—C24—H24	120.6
C12—C8—C10	119.3(3)	C26—C24—C25	118.8(5)
C12—C8—C11	122.3(3)	C21—C25—C24	117.8(6)
N6—C9—C6	123.5(3)	C21—C25—H25	121.1
N6—C9—H9	118.2	C24—C25—H25	121.1
С6—С9—Н9	118.2	N5-C26-C24	125.2(5)
C8—C10—C14	117.0(4)	N5—C26—H26	117.4
C15—C10—C8	118.3(4)	C24—C26—H26	117.4
C15—C10—C14	124.7(4)	H5A—O5—H5B	104.4
C8—C11—C7	119.0(3)	С27—О8—Н8	109.5
C13—C11—C7	119.5(3)	H6A—O6—H6B	104.5
C13—C11—C8	121.5(3)	O8—C27—H27A	107.4
C8—C12—H12	119.3	O8—C27—H27B	107.4
C16—C12—C8	121.4(4)	O8—C27—C28	119.8(4)
C16—C12—H12	119.3	H27A—C27—H27B	106.9
C11—C13—H13	119.8	С28—С27—Н27А	107.4
C11—C13—C18	120.4(4)	С28—С27—Н27В	107.4
C18—C13—H13	119.8	C27—C28—H28A	109.5
C10—C14—H14	118.9	C27—C28—H28B	109.5
C17—C14—C10	122.4(4)	С27—С28—Н28С	109.5
C17—C14—H14	118.9	H28A—C28—H28B	109.5
C20—N2—H2	120.1	H28A—C28—H28C	109.5
C20—N2—N1	119.7(4)	H28B—C28—H28C	109.5

Fig. S15. CPK space-filling model of NDC-NN3

Fig. S16. FT-IR spectra of (a) NDC-NN3 crystal and xerogels formed from sonogels with (b) ethanol, (c) THF and (d) 1,4-dioxane as solvents

Fig. S17. (a) Variable-time ¹H NMR spectra of NDC-NN3 sonogel (ethanol-d6, 20 mg·mL⁻¹) and (b) the partial image enlargement

Fig. S18. Schematic representation of the possible local aggregation for NDC-NN3 in sonogels: (a) 2D and (b) 3D structure

2. References

1 X. Z. Luo, X. J. Jia, J. H. Deng, J. L. Zhong, H. J. Liu, K. J. Wang and D. C. Zhong, *J. Am. Chem. Soc.*, 2013, 135, 11684-11687.