Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Asymmetric total synthesis of (1S,2S,4S)-β-elemene

Wei Chen^{a,b}, Zhun Feng^{*,a}, and Qiang Liu^{*,b}

^a Guangdong-Macao Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd., Zhuhai 519031, P. R. of China.
^b School of Chinese Medicine, Southern Medicinal University, Guangzhou 510515, P. R. of China.

E-mail: zhun.feng@gmtcmpark.com (Z. Feng); gzlq2002@163.com (Q. Liu)

Part 1: NMR spectra comparison	S1
Part 2: Copies of NMR spectra	S2

1. NMR spectra comparison of synthetic 3 and the isolated natural product

¹ H NMR (δ, ppm) (500 MHz, CDCl ₃) Shi, et al ^[1]	¹ H NMR (δ, ppm) (500 MHz, CDCl ₃) This work	¹³ C NMR (δ, ppm) (125 MHz, CDCl ₃) Shi, et al ^[1]	¹³ C NMR (δ, ppm) (125 MHz, CDCl ₃) This work
5.82 (dd, J=17.5,10.9Hz,1H)	5.82 (dd, <i>J</i> = 17.5, 11.0 Hz, 1H)	150.22	150.2
4.91 (dd, J=18.1, 1.0Hz)	4.93 (dd, <i>J</i> = 8.3, 1.0 Hz, 1H)	148.18	148.2
4.90 (dd, <i>J</i> =10.5, 1.0Hz)	4.90 (s, 1H)	147.99	147.9
4.85 (s, 1H)	4.86 (d, <i>J</i> = 1.2 Hz, 1H)	112.37	112.4
4 .84 (s, 1H)	4.84 (m, 1H)	110.19	110.17
4.79 (s, 1H)	4.79 (s, 1H)	110.11	110.15
4.68 (s, 1H)	4.68 (s, 1H)	47.77	47.7
2.36 (m, 1H)	2.40 – 2.32 (m, 1H)	39.83	39.8
2.18 (dd, <i>J</i> = 9.1, 4.6 Hz, 1H)	2.18 (m, 1H)	39.11	39.1
1.75 (s, 3H)	1.75 (s, 3H)	34.74	34.7
1.74 (s, 3H)	1.73 (s, 3H)	30.29	30.2
1.60-1.72 (m, 5H)	1.57-1.78 (m, 5H)	25.46	25.5
1.32 (m, 1H)	1.32 (m, 1H)	24.70	24.6
1.02 (s, 3H)	1.02 (s, 3H)	22.27	22.30
		22.20	22.29

[1] Y. M. Shi, R. Y. Wang, X. Feng, X. T. Chen, J. Li, A. L. He, J. Shi, Y. M. Yuan, Y. C. Wang and S. Liu, *CN Pat.*, CN 109438166 B, 2021.

2. NMR spectra

¹³C NMR of compound **12**

¹³C NMR of compound **13**

¹³C NMR of compound **15**

¹³C NMR of compound **16**

¹³C NMR of compound **9**

¹³C NMR of compound **17**

¹H NMR of compound **18**

¹H NMR of compound (1S, 2S, 4S)- β -elemene (3)

¹³C NMR of compound (1S,2S,4S)- β -elemene (3)