Table S1. Experimental parameters for X-ray powder diffraction of BZT, BLaZT and BSmZT powders.

Crystallographic data			
Chemical formula	BZT	BSmZT	BLaZT
Crystal system	Cubic	Cubic	Cubic
Space group	Pm3m	Pm3m	Pm3m
a (Å)	4.18061(11)	4.17226(11)	4.17882(12)
Volume (Å ³)	73.067(3)	72.630(3)	72.973(4)
Z	1	1	1
Density (g/cm ³)	6.002	6.0873	6.1179
Crystallite size (µm)	0.126	0.109	0.123
Data collection			
Temperature (°C)	25	25	25
CuKa Radiations (Å)	1.5406	1.5406	1.5406
Measuring range (°)	$10 \le 2\theta \le 120$	$10 \leq 2\theta \leq 120$	$10 \le 2\theta \le 120$
Step (20)	0.015	0.015	0.015
Rietveld data			
Program	Jana 2006	Jana 2006	Jana 2006
Profile fonction	Pseudo-Voigt	Pseudo-Voigt	Pseudo-Voigt
Caglioti parameters	U = 0.051(5)	U = 0.038(6)	U = 0.018(2)
	V = -0.055(4)	V = -0.030(8)	V = -0.026(9)
	W = 0.037(2)	W = 0.024(4)	W = 0.029(1)
Rp (%)	6.16	6.20	6.26
Rwp (%)	8.43	8.45	8.86
GOF	1.31	1.35	1.49

Compound	Wyckoff position	Atom	Х	У	Z	Uiso (Å)	Occupies
	1a	Ba	0.5	0.5	0.5	0.0189(5)	0.962(19)
BZT	1b	Ti/Zr	0	0	0	0.0157(4)	0.17(3)/0.83(3)
	3c	Ο	0.5	0	0	0.0120(1)	1
BLaZT	1a	Ba/La	0.5	0.5	0.5	0.0125(9)	0.85(5)/0.12(5)
	1b	Ti/Zr	0	0	0	0.0095(12)	0.11(2)/0.89(2)
	Зс	Ο	0.5	0	0	0.0091(15)	1
	1a	Ba	0.5	0.5	0.5	0.0101(9)	0.919(5)/0.048(5)
BSmZT	1b	Ti/Zr	0	0	0	0.0053(12)	0.14 (1)/0.86 (1)
	3c	0	0.5	0	0	0.0135(18)	1

Table S2. Refined structural parameters for BZT, BLaZT and BSmZT powder from X-ray diffraction data.

Table S3. Selected bond distances (A) and angles (°) for BZT, BLaZT and BSmZT powder from X-ray diffraction data.

Bond distances (Å) and angles (°)	BZT	BSmZT	BLaZT
Ti/Zr–O	2.09015(12)	2.08596(11)	2.08904(13)
Ba/La–O	2.95592(12)	2.94999(11)	2.95434(13)
3×O1–Ti/Zr–O1	180.0(5)	180.0(5)	180.0(5)
12×O1–Ti/Zr–O1	90.000(2)	90.000(2)	90.0000(2)
6×O1–Ba/La–O1	180.0(5)	180.0(5)	180.0(5)
12×O1–Ba/La–O1	90.000(2)	90.000(2)	90.000(2)
Ti/Zr–O–Ti/Zr	180.0(5)	180.0(5)	180.0(5)
4xBa/La–O–Ba/La	90.000(2)	90.000(2)	90.000(2)
2xBa/La–O– Ba/La	180.0(5)	180.0(5)	180.0(5)
8xTi/Zr–O–Ba/La	90.000(1)	90.000(1)	90.000(1)

	T (°C)	$R_g(M\Omega)$	$Q_g(nF.s^{\alpha-1})$	α _g	$R_{gb}(M\Omega)$	$Q_{gb}(nF.s^{\alpha-1})$	α_{gb}
BZT	320	86.96	0.191	0.987			
	330	37.88	0.192	0.987			
	340	18.72	0.197	0.985			
	350	12.09	0.202	0.984			
	360	8.60	0.207	0.982			
	370	6.24	0.214	0.980			
	380	4.45	0.221	0.978			
BSmZT	320	5.50	1.08	0.926	0.455	0.263	0.957
	330	4.73	1.17	0.922	0.374	0.269	0.955
	340	3.41	1.34	0.912	0.278	0.264	0.952
	350	2.57	1.49	0.906	0.216	0.263	0.949
	360	1.88	1.66	0.899	0.165	0.262	0.946
	370	1.53	1.76	0.896	0.137	0.261	0.945
	380	1.12	1.91	0.890	0.105	0.262	0.942
BLaZT	320	3.08	0.832	0.949	0.221	0.312	0.977
	330	1.91	0.920	0.945	0.162	0.311	0.977
	340	1.31	0.951	0.940	0.139	0.306	0.976
	350	0.875	1.069	0.937	0.129	0.297	0.976
	360	0.717	1.102	0.932	0.083	0.290	0.975
	370	0.551	1.152	0.930	0.069	0.304	0.974
	380	0.475	0.832	0.928	0.059	0.303	0.974

Table S4. Equivalent circuit electrical parameters obtained from a complex impedance spectrum for BZT, BLaZT and BSmZT ceramics.

Compound	T (°C)	$\sigma_{DC} \left(\Omega.m \right)^{-1}$	$A_1\left(\Omega^{-1}m^{-1}rad^{-s}\right)$	s ₁	$A_2\left(\Omega^{-1}m^{-1}rad^{-s}\right)$	s ₂
BZT	320	$4.38 \times 10^{-6} \pm 1.34 \times 10^{-7}$	$3.84 \times 10^{-9} \pm 5.86 \times 10^{-10}$	0.68 ± 0.03		
	330	$8.35 \times 10^{-6} \pm 3.07 \times 10^{-7}$	$4.53 \times 10^{-9} \pm 3.72 \times 10^{-10}$	0.67 ± 0.04		
	340	$1.45 \times 10^{-5} \pm 2.84 \times 10^{-6}$	$5.03 \times 10^{-9} \pm 4.58 \times 10^{-10}$	0.66 ± 0.03		
	350	$2.15 \times 10^{-5} \pm 5.76 \times 10^{-6}$	$5.28 \times 10^{-9} \pm 1.63 \times 10^{-10}$	0.65 ± 0.01		
	360	$2.95 \times 10^{-5} \pm 3.51 \times 10^{-6}$	$5.17 \times 10^{-9} \pm 7.14 \times 10^{-10}$	0.65 ± 0.01		
	370	$3.95 \times 10^{-5} \pm 4.62 \times 10^{-6}$	$5.73 \times 10^{-9} \pm 4.96 \times 10^{-10}$	0.64 ± 0.03		
	380	$4.48 \times 10^{-5} \pm 2.04 \times 10^{-6}$	$6.93 \times 10^{-9} \pm 6.35 \times 10^{-10}$	0.63 ± 0.02		
BSmZT	320	$1.30 \times 10^{-5} \pm 7.34 \times 10^{-6}$	$1.65 \times 10^{-8} \pm 2.86 \times 10^{-9}$	0.74 ± 0.03	$1.35 \times 10^{-7} \pm 1.55 \times 10^{-8}$	0.54 ± 0.01
	330	$1.65 \times 10^{-5} \pm 1.25 \times 10^{-6}$	$1.91 \times 10^{-8} \pm 1.33 \times 10^{-9}$	0.79 ± 0.03	$1.42 \times 10^{-7} \pm 2.86 \times 10^{-8}$	0.53 ± 0.01
	340	$2.40 \times 10^{-5} \pm 2.56 \times 10^{-6}$	$2.12 \times 10^{-8} \pm 2.76 \times 10^{-9}$	0.84 ± 0.04	$1.56 \times 10^{-7} \pm 2.76 \times 10^{-8}$	0.52 ± 0.01
	350	$3.07 \times 10^{-5} \pm 4.09 \times 10^{-6}$	$2.76 \times 10^{-8} \pm 3.56 \times 10^{-9}$	0.87 ± 0.04	$1.88 \times 10^{-7} \pm 1.94 \times 10^{-8}$	0.51 ± 0.02
	360	$4.01 \times 10^{-5} \pm 3.55 \times 10^{-6}$	$3.12 \times 10^{-8} \pm 1.71 \times 10^{-9}$	0.90 ± 0.03	$2.68 \times 10^{-7} \pm 2.88 \times 10^{-8}$	0.50 ± 0.01
	370	$4.94 \times 10^{-5} \pm 7.42 \times 10^{-6}$	$3.95 \times 10^{-8} \pm 2.82 \times 10^{-9}$	0.93 ± 0.02	$3.10 \times 10^{-7} \pm 9.98 \times 10^{-8}$	0.43 ± 0.02
	380	$6.11 \times 10^{-5} \pm 3.83 \times 10^{-6}$	$5.34 \times 10^{-8} \pm 1.25 \times 10^{-9}$	0.95 ± 0.03	$4.77 \times 10^{-7} \pm 1.54 \times 10^{-8}$	0.42 ± 0.02
BLaZT	320	$2.03 \times 10^{-5} \pm 3.46 \times 10^{-6}$	$2.76 \times 10^{-8} \pm 2.26 \times 10^{-9}$	0.64 ± 0.04	$2.44 \times 10^{-7} \pm 2.36 \times 10^{-8}$	0.49 ± 0.01
	330	$2.91 \times 10^{-5} \pm 3.11 \times 10^{-6}$	$4.65 \times 10^{-8} \pm 1.36 \times 10^{-9}$	0.66 ± 0.03	$2.55 \times 10^{-7} \pm 2.75 \times 10^{-8}$	0.47 ± 0.01
	340	$4.08 \times 10^{-5} \pm 2.53 \times 10^{-6}$	$4.95 \times 10^{-8} \pm 6.24 \times 10^{-9}$	0.687 ± 0.03	$3.90 \times 10^{-7} \pm 2.03 \times 10^{-8}$	0.45 ± 0.008
	350	$5.32 \times 10^{-5} \pm 3.24 \times 10^{-6}$	$6.75 \times 10^{-8} \pm 8.15 \times 10^{-9}$	0.73 ± 0.03	$4.72 \times 10^{-7} \pm 2.79 \times 10^{-8}$	0.45 ± 0.009
	360	$6.51 \times 10^{-5} \pm 5.84 \times 10^{-6}$	$9.41 \times 10^{-8} \pm 2.01 \times 10^{-9}$	0.75 ± 0.03	$6.28 \times 10^{-7} \pm 3.97 \times 10^{-8}$	0.44 ± 0.009
	370	$7.41 \times 10^{-5} \pm 7.35 \times 10^{-6}$	$2.73 \times 10^{-7} \pm 2.64 \times 10^{-8}$	0.81 ± 0.03	$7.61 \times 10^{-7} \pm 4.73 \times 10^{-8}$	0.43 ± 0.009
	380	$8.54 \times 10^{-5} \pm 6.05 \times 10^{-6}$	$3.69 \times 10^{-7} \pm 1.25 \times 10^{-8}$	0.83 ± 0.03	$9.03 \times 10^{-7} \pm 1.01 \times 10^{-8}$	0.40 ± 0.01

Table S5. Parameters obtained from Joncher's plot for BZT, BLaZT and BSmZT ceramics.