SUPPLWMENTARY INFORMATION

Beshanzuamide A, an unprecedented prenylated indole alkaloid produced by *Aspergillus* sp. Y-2 from the critically endangered conifer *Abies beshanzuensis*

Yuan-Xing Zhu^{1a}, Wenxin Ding^{1a}, Jin-Feng Hu^b, Juan Xiong^{*b}, Jiyang Li^{*a}

^a Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai 201203, China
 ^b Department of Natural Medicines, School of Pharmacy, Fudan University, Shanghai 201203, China
 ¹These authors contributed equally to this work.

Corresponding Authors

*E-mail: lijiyang@fudan.edu.cn (J. Li)

*E-mail: jxiong@fudan.edu.cn (J. Xiong)

Contents

Part 1. The structures of notoamide O and compound 1	.2
Part 2. GIAO ¹³ NMR data computational details for 1	.2
Part 2. ECD computational details for 1	.6
Part 3. Original HR-ESIMS and 1D/2D NMR spectra of 1	.7

The structures of notoamide O and compound 1

Fig. S1. Four possible relative configurations of compound 1 for quantum calculations

GIAO ¹³NMR data computational details for 1.

(10S^{*},11R^{*},17S^{*},21S^{*})-**1**a

(10*R*^{*},11*R*^{*},17*S*^{*},21*S*^{*})-**1**c

(10*S*^{*},11*R*^{*},17*S*^{*},21*R*^{*})-**1**b

0,0=

Ňó

Ô

0

JΗ

Ή

(10*R*^{*},11*R*^{*},17*S*^{*},21*R*^{*})-**1**d

Fig. S2. Four possible relative configurations of compound 1 for quantum calculations

no.	Exptl.	Calcd. of 1 a	Abs dev	Calcd. of 1 b	Abs dev	Calcd. of 1 c	Abs dev	Calcd. of 1 d	Abs dev
2	178.4	177.81	0.59	178.34	0.06	177.52	0.88	178.61	0.21
3	193.3	193.75	0.45	194.04	0.74	191.64	1.66	194.21	0.91
4	127.9	130.34	2.44	129.63	1.73	130.58	2.68	129.36	1.46
5	111.9	112.26	0.36	112.74	0.84	113.29	1.39	112.53	0.63
6	164	164.59	0.59	163.49	0.51	164.46	0.46	162.43	1.57
7	106.2	105.07	1.13	106.90	0.70	106.88	0.68	106.92	0.72
8	158.8	157.89	0.91	159.40	0.60	157.56	1.24	157.06	1.74
9	112.3	110.29	2.01	113.32	1.02	113.13	0.83	113.87	1.57
10	90.5	92.56	2.06	89.71	0.79	91.19	0.69	92.55	2.05
11	61.7	61.72	0.02	62.85	1.15	62.41	0.71	66.17	4.47
12	168.2	169.17	0.97	166.68	1.52	166.14	2.06	167.47	0.73
14	45.3	45.29	0.01	44.20	1.10	43.81	1.49	44.25	1.05
15	25.4	26.16	0.76	25.28	0.12	24.02	1.38	25.53	0.13
16	30	30.72	0.72	29.75	0.25	28.79	1.21	30.00	0.00
17	68.2	68.35	0.15	67.53	0.67	67.68	0.52	68.00	0.20
18	175	171.92	3.08	172.30	2.70	174.52	0.48	171.84	3.16
20	31.6	32.70	1.10	32.52	0.92	32.99	1.39	32.87	1.27
21	42.3	41.38	0.92	42.50	0.20	44.25	1.95	40.59	1.71
22	43.4	43.41	0.01	43.69	0.29	42.68	0.72	42.52	0.88
23	26.5	25.39	1.11	24.85	1.65	28.64	2.14	23.30	3.20
24	22.5	21.84	0.66	25.63	3.13	23.47	0.97	24.83	2.33
25	116.3	119.14	2.84	118.73	2.43	118.98	2.68	118.98	2.68
26	129.9	128.77	1.13	129.00	0.90	130.12	0.22	129.20	0.70
27	79.4	80.26	0.86	79.36	0.04	79.55	0.15	79.05	0.35
28	28.5	27.55	0.95	27.04	1.46	26.05	2.45	27.11	1.39
29	28.6	27.78	0.82	26.62	1.98	25.75	2.85	26.84	1.76
		MAE	1.02	MAE	1.06	MAE	1.30	MAE	1.42
		RMS	1.31	RMS	1.33	RMS	1.52	RMS	1.77
		P _{mean}	40.82%	P _{mean}	34.04%	P _{mean}	25.16%	P _{mean}	18.50%
		Prel	99.12%	Prel	0.88%	Prel	0.00%	Prel	0.00%

 Table S1. ¹³C NMR calculation of 1a-1d, fitting to the experimental data of compound 1.

Fig. S3. Conformers of **1**a optimized on B3LYP-D3(BJ)/TZVP (IEFPCM, CH_3OH) level of theory for NMR calculation.

Table S2. Gibbs free energy and Boltzmann distribution of conformers of 1a calculated onB3LYP-D3(BJ)/TZVP level with IEFPCM solvation model (CH_3OH).

Conformers	Gibbs free energy (a.u.)	∆G (kcal/mol)	Population
1	-1622.945662	0	58.31%
2	-1622.945273	0.244101157	39.83%

Fig. S4. Conformers of structure **1**b optimized on B3LYP-D3(BJ)/TZVP (IEFPCM, CH_3OH) level of theory for NMR calculation.

Table S3. Gibbs free energy and Boltzmann distribution of conformers of 1b calculated onB3LYP-D3(BJ)/TZVP level with IEFPCM solvation model (CH3OH)

Conformers	Gibbs free energy (a.u.)	ΔG (kcal/mol)	Population
1	-1622.940707	0	48.16%
2	-1622.940253	0.284889268	29.76%
3	-1622.939741	0.60617408	17.29%
4	-1622.938532	1.364832945	4.80%

Conformer 3

Conformer 1

Conformer 4

Fig. S5. Conformers of **1**c optimized on B3LYP-D3(BJ)/TZVP (IEFPCM, CH_3OH) level of theory for NMR calculation

Table S4. Gibbs free energy and Boltzmann distribution of conformers of **1**c calculated on B3LYP-D3(BJ)/TZVP level with IEFPCM solvation model (CH₃OH)

Conformers	Gibbs free energy (a.u.)	∆G (kcal/mol)	Population
1	-1622.932835	0	40.61%
2	-1622.932265	0.357680358	22.19%
3	-1622.932213	0.390310847	21.00%
4	-1622.931968	0.54405065	16.20%

Fig. S6. Conformers of **1**d optimized on B3LYP-D3(BJ)/TZVP (IEFPCM, CH_3OH) level of theory for NMR calculation

Table S5. Gibbs free energy and Boltzmann distribution of conformers of **1**d calculated on B3LYP-D3(BJ)/TZVP level with IEFPCM solvation model (CH₃OH)

Conformers	Gibbs free energy (a.u.)	∆G (kcal/mol)	Population
1	-1622.941767	0	66.84%
2	-1622.941106	0.414783713	33.16%

ECD computational details for 1.

Table S6. Gibbs free energies^{*a*} and equilibrium populations^{*b*} of low-energy conformers of (105)-1.

Conformarc	In MeOH			
Conformers	ΔG	P (%)/100		
1	0.00	0.629		
2	0.33	0.362		
3	2.86	0.005		

^{*a*}B3LYP/6-31+G(d,p), in kcal/mol. ^{*b*}From ΔG values at 298.15K.

Table S7. Gibbs free energies^a and equilibrium populations^b of low-energy conformers of(10R)-1.

Conformarc	In MeOH				
Conformers	ΔG	P (%)/100			
1	0.00	0.712			
2	0.54	0.288			
3	5.41	0.000			

^{*a*}B3LYP/6-31+G(d,p), in kcal/mol. ^{*b*}From ΔG values at 298.15K.

Fig. S7. The HR-ESIMS of compound 1

AB SCIEX

Created with Reporter Printed: 22/05/2020 4:39:13 PM

H 477.189985944 (Mass/RT/Isotope/Library/Formula) ✓ ● ✓ ● ✓

10/11/	Compound Name (Library Hit)	Score	Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)	Expected RT (min)	Found RT (min)	RT Delta (min)	Isotope Diff (%)	Library Score(%)
vevev	477.189985944(Y2G7B)	96%	C26H27N3O6	3228465	5	478.1973	478.1977	0.9	0.00	0.50	0.50	1.1%	N/A

Fig. S8. The ¹H-NMR spectrum of compound 1 (600 MHz) in CD₃OD

Fig. S9. The 13 C -NMR spectrum of compound 1 (150 MHz) in CD₃OD

Fig. S10. The DEPT 135 spectrum of compound 1 (150 MHz) in CD_3OD

Fig. S11. The HSQC spectrum of compound 1 (600 MHz) in CD_3OD

Fig. S12. The HMBC spectrum of compound 1 (600 MHz) in CD_3OD

Fig. S13. The $^{1}H^{-1}H$ COSY spectrum of compound 1 (600 MHz) in CD₃OD

Fig. S14. The ROESY spectrum of compound 1 in CD_3OD

Fig. S15. The ¹H-NMR spectrum of compound 1 (400 MHz) in DMSO-d₆

Fig. S16. The 13 C -NMR spectrum of compound 1 (150 MHz) in DMSO- d_6

Fig. S17. The HMBC spectrum of compound 1 (600 MHz) in DMSO- d_6

Fig. S18. The ROESY spectrum of compound **1** in DMSO- d_6