Electronic Supplementary Information

Magnetic coupling induced by the interaction between

endohedral metal borofullerenes

Jia Wang, *a Xuhui Liu, a Wanyi Zhang, a Chunxu Wang a and Zhengkun Qin *a

^a College of Information Technology, Jilin Normal University, Siping 136000, China

* E-mail: wangjia18@jlnu.edu.cn and qzkjlnu@163.com

Content

- Part 1. The relative energies of U@B₄₀ dimers
- Part 2. The molecular orbitals diagram
- Part 3. Density of states

Part 1. The relative energies of $U @B_{40} \, dimers$

Structures –	The relative energy (eV)			
	Singlet	Triplet	Quintet	Septet
7 ₃ ⊥7 ₁	0.0	0.005	0.35	0.586
7 ₃ 7771	0.0	0.001	0.307	0.592
7₃↗ ∠ 7₁	0.001	0.099	0.0	0.549
7 ₃₋ 6 ₁	0.175	0.0	0.173	0.47
61-61	0.0	0.384	0.701	0.709
vertex-vertex	0.011	0.169	0.0	0.829
61-62	0.0	0.822	0.666	0.056
7 ₃₋ 6 ₂	0.019	0.0	0.14	0.336

Table S1 The relative energies of $U@B_{40}$ dimers. Units: eV.

Part 2. The molecular orbitals diagram and density of states

For $7_3 \nearrow 7_1$ and $6_1 - 6_2$ conformations, the frontier molecular orbitals (MOs) for α electron are strongly localized on one U@B₄₀ monomer, while the frontier MOs for β electron mainly occupies at another monomer. For $7_3 \nearrow 7_1$, vertex-vertex conformations, the four singly occupied MOs are localized on U@B₄₀ dimers, while two singly occupied MOs of 7_3 - 6_2 are occupies at two monomers, respectively. For 7_3 - 6_1 conformation, two singly occupied MOs are occupies at one U@B₄₀ monomer. Thus, the spin density comes from the frontier MOs of structures, as shown in Figs. S1-S7.

Figure S1 The frontier molecular orbitals (MOs) diagram of ground state of $7_3 \nearrow 7_1$ conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.01 a.u.

Figure S2 The frontier molecular orbitals (MOs) diagram of ground state of $7_3 \not \sim 1_1 \not \sim 1_2 \rightarrow$

red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.02 a.u.

Figure S3 The frontier MOs diagram of ground state of $7_{3-}6_1$ conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.02 a.u.

Figure S4 The frontier MOs diagram of ground state of 6_1 - 6_1 conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.02 a.u.

Figure S5 The frontier MOs diagram of ground state of vertex-vertex conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.01 a.u.

Figure S6 The frontier MOs diagram of ground state of 6_1 - 6_2 conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.01 a.u.

Figure S7 The frontier MOs diagram of ground state of 7_{3} . 6_2 conformation. The red and black lines represent α -MOs and β -MOs, respectively. The MOs indicated by blue and red are occupied MOs, while those indicated by orange and cyan are unoccupied MOs. The isosurface value is 0.01 a.u.

Figure S8 MOs- β of the $7_3 \perp 7_1$ conformation for the U@B₄₀ superatomic orbital components. Superatomic orbitals S, P, D, and F composed of the B₄₀ cages.

Figure S9 MOs- β of the $7_3 \perp 7_1$ conformation for the various U@B₄₀ superatomic orbital components. 2S, 2P, 2D, and 2F refer to the U@B₄₀ monomer superatomic orbitals.

Figure S10 The MOs diagram for 6_1 - 6_1 conformation for the U@B₄₀ superatomic orbital components. 2S, 2P, 2D, and 2F refer to the U@B₄₀ monomer superatomic orbitals.

Figure S11 Density of states of structure $7_3 \nearrow \bowtie 7_1$. (a) The total density of states (TDOS) of 6_1 - 6_2 and the local density of states (LDOS) of U atoms. (b)/(c) The partial density of states (PDOS) of s, p, d and f atomic orbital of two U atoms.

Figure S12 Density of states of structure 7_3-6_1 . (a) The TDOS and the LDOS of U atoms. (b)/(c) The PDOS of s, p, d and f atomic orbital of two U atoms.

Figure S13 Density of states of structure 6_1 - 6_1 . (a) The TDOS and the LDOS of U atoms. (b)/(c) The PDOS of s, p, d and f atomic orbital of two U atoms.

Figure S14 Density of states of structure 6_1 - 6_2 . (a) The TDOS and the LDOS of U atoms. (b)/(c) The PDOS of s, p, d and f atomic orbital of two U atoms.