Supplementary Material

The crystal structures, phase stabilities, electronic structures and bonding features of iridium borides from first-principles

calculations

Jinquan Zhang,^a Yuanyuan Jin,^{*a} Chuanzhao Zhang,^{*a} Yanqi Wang,^a Libiao Tang,^a Song Li,^a Meng Ju,^b Jingjing Wang,^c Weiguo Sun^d and Xilong Dou^e

^a Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023,

China. Email: <u>scujyy@163.com</u> (Yuanyuan Jin) and <u>zcz19870517@163.com</u> (Chuanzhao Zhang)

^b School of Physical Science and Technology, Southwest University, Chongqing 400715, China.

^c College of Computer and Information Engineering, Hubei Normal University, Huangshi 435002,

China.

^d College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China

^e Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

Phase	Space group	Lattice parameters (Å, °)	Atom	Atomic coordinates		
				(fractional)		
Ir ₃ B			Ir(1f)	0.66667	0.33333	0.50000
	<i>P</i> –6 <i>m</i> 2	<i>a</i> =2.794, <i>b</i> =2.792 <i>c</i> =7.513, γ=120	Ir(2h)	0.33333	0.66667	0.19345
			B(1e)	0.66667	0.33333	0.00000
Ir ₂ B		a=5.699, b=2.803, c=4.736, $\beta=80.720$	Ir(2e)	0.97286	0.25000	0.76544
	<i>P</i> 2 ₁ / <i>m</i>		Ir(2e)	0.52023	0.75000	0.23781
			B(2e)	0.75929	0.25000	0.41058
Ir ₃ B ₂	<i>C</i> 2/ <i>m</i>	a=7.500, b =2.860, c =8.605, β =139.619	Ir(4i)	0.33331	0.00000	0.33495
			Ir(2a)	0.00000	0.00000	0.00000
			B(4i)	0.61554	0.00000	0.27856
	E	<i>a</i> =5.659, <i>b</i> =5.731, <i>c</i> =10.020	Ir(8d)	0.24894	0.00000	0.33235
Ir D			Ir(8b)	0.25000	0.25000	0.07929
II4D3	1°mm2		B(8c)	0.00000	0.25608	0.24163
			B(4a)	0.00000	0.00000	0.00000
			Ir(4f)	0.33333	0.66667	0.04790
		a = 2521 $b = 2521$ $a = 18057$	Ir(4e)	0.00000	0.00000	0.14924
Ir_5B_4	$P6_3/mmc$	u=5.521, b=5.521, c=18.957,	Ir(2c)	0.33333	0.66667	0.25000
		γ=120	B(4f)	0.66667	0.33333	0.07907
			B(4f)	0.66667	0.33333	0.19462
		a=6.722, b =3.924, c =3.556, β =98.705	Ir(2e)	0.13814	0.25000	0.87934
I.,D	D2/m		Ir(2e)	0.63715	0.25000	0.37912
IID	$P Z_1/m$		B(2e)	0.59694	0.25000	0.69884
			B(2e)	0.09582	0.25000	0.19876
	Cm	a=10.623, b =2.902, c =12.373, β =149.737	Ir(2a)	0.74463	0.00000	0.84784
			Ir(2a)	0.00000	0.00000	0.00000
			Ir(2a)	0.54485	0.00000	0.57077
			Ir(2a)	0.28472	0.00000	0.42031
Ir_4B_5			B(2a)	0.08389	0.00000	0.32761
			B(2a)	0.82194	0.00000	0.17625
			B(2a)	0.19934	0.00000	0.09735
			B(2a)	0.46237	0.00000	0.25205
			B(2a)	0.38533	0.00000	0.75904
Ir ₃ B ₄	Pnma		Ir(4c)	0.01934	0.25000	0.21009
		<i>a</i> =16.266, <i>b</i> =2.962, <i>c</i> =6.028	Ir(4c)	0.18546	0.25000	0.09055
			Ir(4c)	0.35150	0.25000	0.17166
			B(4c)	0.13486	0.25000	0.42561
			B(4c)	0.40715	0.25000	0.50234
			B(4c)	0.21497	0.75000	0.35015
			B(4c)	0.04250	0.75000	0.46665
Ir_2B_3	P6 ₃ /mmc	<i>a</i> =3.124, <i>b</i> =3.124, <i>c</i> =12.184,	Ir(4f)	0.33333	0.66667	0.13893

Table S1 Structural information for the lowest energy phases for each components considered in the Ir–B binary system under ambient pressure.

		<i>γ</i> =120	B(4f)	0.33333	0.66667	0.96097
			B(2d)	0.33333	0.66667	0.75000
IrB ₂		- 7 400 k 0.856 a 5.808	Ir(4c)	0.61236	0.25000	0.24258
	C2/m	u=7.422, b=2.850, c=5.898,	B(4c)	0.39454	0.25000	0.50840
		p = 07.555	B(4c)	0.59708	0.25000	0.91963
Ir ₂ B ₅			Ir(3a)	0.66667	0.33333	0.97776
	R3m		Ir(3a)	0.66667	0.33333	0.16843
		a-2.076 h-2.076 a-24.747	B(3a)	0.66667	0.33333	0.07259
		u=2.970, b=2.970, c=24.747,	B(3a)	0.66667	0.33333	0.25611
		<i>y</i> =120	B(3a)	0.33333	0.66667	0.04263
			B(3a)	0.33333	0.66667	0.10614
			B(3a)	0.33333	0.66667	0.22454
IrB ₃			Ir(4c)	0.10600	0.25000	0.35280
	Pnma		B(4c)	0.95110	0.25000	0.01260
		<i>a</i> =9.825, <i>b</i> =3.145, <i>c</i> =4.546	B(4c)	0.32320	0.25000	0.19080
			B(4c)	0.28850	0.25000	0.59090
			B(4c)	0.28850	0.25000	0.59090

Phase	Ir ₂ B	Ir ₃ B ₂	Ir ₄ B ₃	IrB	Ir_4B_5	Ir_3B_4
Space Group	$P2_1/m$	<i>C</i> 2/ <i>m</i>	Fmm2	$P2_1/m$	Cm	Pnma
S_{11}	0.002162	0.003216	0.001999	0.006793	0.002857	0.001935
<i>S</i> ₂₂	0.002425	0.002630	0.002876	0.005339	0.002955	0.003126
<i>S</i> ₃₃	0.004388	0.002964	0.003104	0.006640	0.002500	0.002260
S_{44}	0.006651	0.005877	0.011116	0.016247	0.013626	0.013343
S_{55}	0.041190	0.005598	0.010718	0.010759	0.006322	0.006765
S ₆₆	0.016536	0.007860	0.008380	0.021858	0.015798	0.013192
<i>S</i> ₁₂	-0.000419	-0.000888	-0.000425	-0.000873	-0.000800	-0.000375
<i>S</i> ₁₃	-0.000510	-0.001311	-0.000658	-0.004120	-0.000929	-0.000405
<i>S</i> ₂₃	-0.001344	-0.000542	-0.001251	-0.001426	-0.000588	-0.001127
S_{15}	0.000373	0.000566		-0.000749	-0.000684	
S ₂₅	0.002713	-0.000456		0.002712	0.000839	
S ₃₅	-0.009182	0.000072		0.001521	-0.000120	
S_{46}	-0.003480	-0.001001		0.014071	0.005929	

Table S2 Calculated elastic compliance constants S_{ij} for the six considered structures in the Ir-B binary system.

Phase	Space group	Bond length (Å)	ICOHP (eV)
		$B-B^{1}=1.67$	-7.72
D	D 2	$B-B^2=1.80$	-4.62
Б	K-SM	$B-B^{3}=1.74$	-4.81
		$B-B^4=2.00$	-3.47
In D	DO (m	$Ir-B^{1}=2.14$	-2.89
П2В	PZ_1/m	$Ir-B^2 = 2.20$	-2.55
L. D	<i>C</i> 2/ <i>m</i>	$Ir-B^1=2.15$	-3.00
Ir_3B_2	C2/m	$Ir-B^2=2.19$	-2.86
Ir_4B_3	Fmm2	Ir-B=2.16	-3.05
I D		$Ir-B^1=2.11$	-3.01
IrB	$P2_1/m$	$Ir-B^2=2.17$	-3.10
		$Ir-B^1=2.16$	-2.98
		$Ir-B^2=2.17$	-2.63
I. D	Cm	$Ir-B^3=2.13$	-2.58
II_4D_5	Cm	$B-B^{1}=1.89$	-5.03
		$B-B^2=2.00$	-3.93
		$B-B^{3}=2.12$	-3.03
		$Ir-B^1=2.17$	-2.50
		$Ir-B^2=2.20$	-2.28
Ir_3B_4	Pnma	$B-B^{1}=2.02$	-3.97
		$B-B^2=2.12$	-3.08
		$B-B^{3}=2.06$	-3.62

Table S3 The calculated ICOHP of solid α -B, $P2_1/m$ -Ir₂B, C2/m-Ir₃B₂, Fmm2-Ir₄B₃, $P2_1/m$ -IrB, Cm-Ir₄B₅, and Pnma-Ir₃B₄.

Fig. S1 Calculated electronic band structures for (a) $P2_1/m$ –Ir₂B, (b) C2/m–Ir₃B₂, (c) Fmm2–Ir₄B₃ (d) $P2_1/m$ –IrB, (e) Cm–Ir₄B₅ and (f) Pnma–Ir₃B₄ at atmospheric pressure.