Electronic Supplementary Information (ESI)

Fluvirucins B7-B10, New Antifungal Macrolactams from a Marine-Derived *Nonomuraea* sp. MYH522

Hai Yu, a Shuo Chen, a Hongji Li, a Ruina Wang, a Yuanying Jiang, b Lan Yan *a and Peng Sun *ab

^a School of Pharmacy, Naval Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China, sunpeng78@126.com (P.S.); ylansmmu@sina.com (L.Y.).

^b Tongji University School of Medicine, 1239 Siping Road, Shanghai, People's Republic of China.

Table of Content

Table S1. ¹³ C NMR Spectroscopic Data Comparison of Aglycon of B ₀ /B ₉ at	nd Sch
39185/B ₃ /B ₁₀	3
Table S2. In vitro Antibacterial Activity of 1-5 (IC ₅₀ , μ g/mL)	3
Figure S1. Select NOE correlations of 2	3
Figure S2. MS and NMR spectra of 2	4
Figure S3. MS and NMR spectra of 3	9
Figure S4. MS and NMR spectra of 4	14
Figure S5. MS and NMR spectra of 5	19

	$B_0{}^a$	B9 ^a	⊿ ¹³ C	Sch 39185/B ₃ ^b	B_{10}^{a}	⊿ ¹³ C
1	179.0	178.9	0.1	178.2	178.9	-0.7
2	51.1	50.9	0.2	50.9	51.2	-0.3
3	34.0	34.1	-0.1	33.9	34.6	-0.7
4	26.4	26.5	-0.1	25.5	26.3	-0.8
5	27.7	27.9	-0.2	32.6	33.4	-0.8
6	27.6	27.8	-0.2	39.2	39.8	-0.6
7	27.2	27.2	0.0	22.7	23.2	-0.5
8	19.8	20.0	-0.2	21.8	22.6	-0.8
9	78.7	78.4	0.3	77.6	78.5	-0.9
10	42.3	42.3	0.0	41.2	42.0	-0.8
11	26.1	26.2	-0.1	25.6	26.3	-0.7
12	28.5	28.6	-0.1	28.1	28.7	-0.6
13	39.7	39.7	0.0	39.2	39.7	-0.5
15	22.1	22.2	-0.1	21.6	22.0	-0.4
16	9.2	9.3	-0.1	9.0	9.2	-0.2
17	27.6	27.7	-0.1	26.9	27.5	-0.6
18	12.4	12.4	0.0	12.3	12.4	-0.1
19				27.7	28.2	-0.5
20				12.6	12.8	-0.2

Table S1. ¹³C NMR Spectroscopic Data Comparison of Aglycon of B₀/B₉ and Sch 39185/B₃/B₁₀.

^aCD₃OD; ^bCD₃OD/CDCl₃

Table S2. In vitro Antibacterial Activity of 1-5 (IC₅₀, μ g/mL).

compounds	S. aureus	E. Coli
1	>128	>128
2	>128	>128
3	>128	>128
4	>128	>128
5	>128	>128
kanamycin	8	4

Figure S1. Select NOE correlations of 2.

Figure S2. MS and NMR spectra of 2

a) HRESIMS spectrum

b) ¹H NMR spectrum

c) ¹³C NMR spectrum

d) DEPT spectrum

f) HMQC spectrum

g) HMBC spectrum

h) NOESY spectrum

Figure S3. MS and NMR spectra of 3

a) HRESIMS spectrum

b) ¹H NMR spectrum

c) ¹³C NMR spectrum

d) DEPT spectrum

11

f) HMQC spectrum

g) HMBC spectrum

h) NOESY spectrum

Figure S4. MS and NMR spectra of 4

a) HRESIMS spectrum

b) ¹H NMR spectrum

c) ¹³C NMR spectrum

d) DEPT spectrum

f) HMQC spectrum

h) NOESY spectrum

Figure S5. MS and NMR spectra of 5

a) HRESIMS spectrum

b) ¹H NMR spectrum

c) ¹³C NMR spectrum

d) DEPT spectrum

21

f) HMQC spectrum

g) HMBC spectrum

h) NOESY spectrum

