Supporting Information

A designed miniature sensor for the trace level detection and degradation studies of a toxic dye Rhodamine B

Mazhar Hayat^a, Afzal Shah^{a,*}, Muhammad Kamran Hakeem^a, Muhammad Irfan^a, Abdul Haleem^{a,*}, Sher Bahadar Khan^b, and Iltaf Shah^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

^bDepartment of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

^eDepartment of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

*The correspondent authors: Afzal Shah & Abdul Haleem

E-mail: afzals qau@yahoo.com & haleem0300@gmail.com

Table S1. Calculated surface areas of working electrodes

Working Electrode	Surface Area (cm ²)
Bare GCE	0.02
MWCNTs/GCE	0.05
NH ₂ -fMWCNTs/GCE	0.09
HOOC-fMWCNTs/NH2-fMWCNTs/GCE	0.11

 Table S2. Parameters obtained from EIS

Working Electrode	R _e (Ohm)	R _{ct} (Ohm)	CPE (µF)
Bare GCE	169.08	5493.7	67.7
MWCNTs/GCE	166.35	3070.5	43.6
NH ₂ -fMWCNTs/GCE	172.9	178	3.6
HOOC-fMWCNTs/NH ₂ -fMWCNTs/GCE	154.4	159	2.9

Figure S1. (A) plot of oxidation peak current *vs.* scan rate. **(B)** plot of oxidation peak current *vs.* square root of scan rate by using HOOC-*f*MWCNTs/NH₂-*f*MWCNTs/GCE as a designed sensor in 0.1 M phosphate buffer.

Figure S2. (A) SWVs recorded for 20 μ M RhB in different supporting media using HOOCfMWCNTs/NH₂-fMWCNTs/GCE as a modified working electrode. **(B)** The bar chart of peak current of 20 μ M of Rhodamine B vs. supporting electrolyte

Figure S3. (A) The effect of different volume of modifiers on oxidation peak current of 20 μ M Rhodamine B. (B) Plot between peak current *vs.* ratios of volume of modifiers in 0.1 M phosphate buffer electrolyte.

Figure S4. Selection of optimum deposition potential for the sensing of 20 μ M RhB. (A) Square wave voltammograms of 20 μ M RhB. (B) Plot of Ip versus accumulation potential using HOOC-*f*MWCNTs/NH₂-*f*MWCNTs/GCE in PBS of pH=7.0.

Figure S5. Selection of optimal accumulation time for sensing RhB using HOOC*f*MWCNTs/NH₂-*f*MWCNTs/GCE in PBS at pH=7.0. (A) Square wave voltammograms of 20 μ M RhB. (B) Plot of Ip versus accumulation time.

Figure S6. (A)SW voltammograms of 4 μ M RhB showing the reproducibility **(B)** Square wave voltammograms of 4 μ M RhB showing repeatability of the developed sensor in phosphate buffer of pH 7.0.

Figure S7. SWVs recorded on a surface of HOOC-*f*MWCNTs/NH₂-*f*MWCNTs/GCE in 0.1 M phosphate buffer solution of pH 7.0 in the presence of RhB and interfering agents. **(B)** plotted bar chart between peak current of RhB and interfering agents.

Figure S8. (A) Plot of $\ln [(I_p)_t / (I_p)_o]$ versus time kinetic study using electrochemical data of the degradation of Rhodamine B. (B) Plot for the estimation of the extent of reduction of Rhodamine B *vs.* time.

Figure S9. (A) Plot between % degradation and time. (B) Plot for the estimation of the extent of reduction of Rhodamine B *vs.* time.