## Supplementary information

## One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium (VI) and ascorbic acid detection

Fanrong Meng,<sup>a</sup> Haoran Xu,<sup>a</sup> Shuolin Wang,<sup>a</sup> Jingxian Wei,<sup>a</sup> Wengong Zhou,<sup>a</sup> Qiang Wang,<sup>a</sup> Peng

Li,<sup>a</sup> Fangong Kong,<sup>a</sup> Yucang Zhang<sup>\* b</sup>

<sup>a</sup>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of

Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China

<sup>b</sup>College of food and biological engineering, Jimei University, Xiamen, 361021, P.R. China

<sup>\*</sup>Yucang Zhang, Ph. D., College of food and biological engineering, Jimei University, Xiamen,

China

Email: yczhang@jmu.edu.cn

Table S1. Optimal excitation-emission wavenumber and SY of the different CDs synthesized

|                     | CDs-IP | CDs-PM | CDs-IPM | CDs-IM | CDs-A |
|---------------------|--------|--------|---------|--------|-------|
| $\lambda_{ex} (nm)$ | 451    | 442    | 455     | 448    | 425   |
| $\lambda_{em}$ (nm) | 392    | 358    | 397     | 356    | 252   |
| SY (%)              | 9.2%   | 25.7%  | 65.69%  | 37.6%  | 18.3% |



Fig. S1. Switching cycles of the CD-IPMs/Cr (VI) samples upon alternate addition of Cr (VI) (20  $\mu$ M) and AA (20  $\mu$ M) in pH 7.4 HEPES buffered water ( $\lambda$ ex = 397 nm,  $\lambda$ em = 455 nm)



Fig. S2 (a) The overlap between the ultraviolet absorption spectrum of Cr (VI) and fluorescence excitation and emission spectra of CD-IPMs. (b) Fluorescence decay curves of CD-IPMs with and without the existence of Cr (VI) (20 $\mu$ M), after addition of AA (20  $\mu$ M) as a function of time at  $\lambda_{ex}/\lambda_{em}$  of 397/455 nm.



**Fig. S3** (a) Fluorescence emission spectra of CDs-IPM with different amount of Cr(VI) in lake water under 397 nm excitation. (b) The linear relationship between fluorescence intensity ratio (F/F<sub>0</sub>) and concentration of Cr(VI) in lake water.





**Fig. S4** The PL intensity of CD-IPMs at different (a) pH values, (b) ionic strengths, and (c) storage time periods under ultraviolet light-based experimental conditions.

| Sensor    | Size      | Linear range | LOD   | QY    | Reference |
|-----------|-----------|--------------|-------|-------|-----------|
|           | (nm)      | (µM)         | (µM)  | (%)   |           |
| PNCQDs    | 4.24-6.33 | 1.5-30       | 0.023 | 9.6   | 1         |
| C-dots    | 2-4       | 1000–6000    |       | 10.2  | 2         |
| N, Cl-CDs | 3.7–5.8   | 3-40         | 0.28  |       | 3         |
| CDs-220   | 6-9       | 0.2-40       | 0.25  | 21.85 | 4         |
| N-C-dots  | 2-8       | 2-9          | 1.9   | 17.6  | 5         |
| CQD       | 1-5       | 5-100        | 14    | 15.34 | 6         |
| NCND      | 7         | 10-100       | 9000  |       | 7         |
| S, N-CDs  | 1-9       | 0.03–50      | 0.021 | 17    | 8         |
| CDs-IPM   | 1-4.6     | 3-30         | 0.017 | 29.27 | This work |

Table S2. The sensor performance for Cr(VI) detection in comparison with previous works

## Refference

- 1. X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang and C. Dong, *Analytica Chimica Acta*, 2017, **968**, 85-96.
- J. Wang, F. Qiu, X. Li, H. Wu, J. Xu, X. Niu, J. Pan, T. Zhang and D. Yang, *Journal of Luminescence*, 2017, 188, 230-237.
- 3. Q. Hu, T. Li, L. Gao, X. Gong, S. Rao, W. Fang, R. Gu and Z. Yang, Sensors, 2018, 18.
- 4. B. Wang, Y. Lin, H. Tan, M. Luo, S. Dai, H. Lu and Z. Huang, Analyst, 2018, 143, 1906-1915.
- 5. R. V, S. Misra, M. K. Santra and D. Ottoor, *Journal of Photochemistry and Photobiology A: Chemistry*, 2019, **373**, 28-36.
- M. Athika, A. Prasath, E. Duraisamy, V. Sankar Devi, A. Selva Sharma and P. Elumalai, *Materials Letters*, 2019, 241, 156-159.
- R. M. Mathew, E. S. Zachariah, J. Jose, J. John, T. Titus and V. Thomas, *AIP Conference Proceedings*, 2020, 2287, 020014.
- Y. Ji, X. Zou, W. Wang, T. Wang, S. Zhang and Z. Gong, *Microchemical Journal*, 2021, 167, 106284.