Electronic Supplementary Information (ESI): Antifluorite-type Na₅FeO₄ as a low-cost, environment-friendly cathode with combined cationic/anionic redox activity for sodium ion batteries: A first-principles investigation

Rasmus Vester Thøgersen, Federico Bianchini, Helmer Fjellvåg, Ponniah Vajeeston*

^aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.

> *To whom correspondence should be addressed: vajeeston.ponniah@smn.uio.no

Supplementary figures

Figure S1: Primitive unit cells of the relaxed low-energy structures, where Na is yellow, Fe is brown and O is red. a) β -Na₅FeO₄ (*Pmmn*), b) α -Na₅FeO₄ (*Pbca*) and c) γ -Na₅FeO₄ (*Pbca*). Strucutral data given in Table S4.

Figure S2: Schematic showing the relationship between the oxygen sublattice in the ideal antifluorite structure and the distorted structure of γ -Na₅FeO₄. Notice the alternating depressions and expansions for each octant.

Figure S3: The phonon dispersion relation and phonon density of states for β -Na₅FeO₄.

Figure S4: The phonon dispersion relation and phonon density of states for α -Na₅FeO₄.

Figure S5: The phonon dispersion relation and phonon density of states for the γ -Na₅FeO₄.

Figure S6: Arrhenius plot of the diffusion coefficients as a function of temperature based on the limiting jump along the most facile diffusion paths for each polymorph. The attempt frequency is set to 10 THz.

Figure S7: The evolution of oxygen vacancy formation energies as a function of temperature. Each line corresponds to a given desodiation level for each polymorph (**a-c**) for a fixed oxygen partial pressure ($p_{O_2} = 0.2$ bar), while **d**) shows the evolution of the formation energies for each polymorph as a function of desodiation at a fixed temperature (300 K) and oxygen partial pressure (0.2 bar).

Figure S8: Total density of states and band structure along a high-symmetry path in the BZ for the β -phase, split into contributions from the spin down and spin up channels, respectively, obtained from GGA+U calculations. The Fermi-level (E_F) is by convention set to 0 and is indicated by a horizontal, dashed black line.

Figure S9: Total density of states and band structure along a high-symmetry path in the Brillouin zone for α -Na₅FeO₄, split into contributions from the spin down and spin up channels, respectively, obtained from GGA+U calculations. The Fermi-level is by convention set to 0 and is indicated by a horizontal, dashed black line.

Figure S10: Total density of states and band structure along a high-symmetry path in the Brillouin zone for γ -Na₅FeO₄, split into contributions from the spin down and spin up channels, respectively, obtained from GGA+U calculations. The Fermi-level is by convention set to 0 and is indicated by a horizontal, dashed black line.

Figure S11: Site-projected electronic density of states for Na, Fe and O, respectively, for α -Na₅FeO₄ obtained from GGA+U calculations. The spin up channel is plotted with positive values and the spin down channel is plotted with negative values. The Fermi-level is by convention set to 0 and is indicated by a vertical, dashed black line.

Figure S12: Site-projected electronic density of states for Na, Fe and O, respectively, for γ -Na₅FeO₄ obtained from GGA+U calculations. The spin up channel is plotted with positive values and the spin down channel is plotted with negative values. The Fermi-level is by convention set to 0 and is indicated by a vertical, dashed black line.

Figure S13: The electronic localisation function computed for **a**) Na_5FeO_4 , **b**) Na_4FeO_4 and **c**) $Na_{3.5}FeO_4$ with an isosurface value of 0.65. A cutout of each crystal structrure is shown together with an isolated oxide ion and its nearest neighbours. There is no discernable change in the localised electron pairs surrounding the oxygen ions throughout each desodiation step, showing that these are predicted to be inactive in the redox process.

Figure S14: O-O and Fe-O distances in Na_{5-x}FeO₄ for **a**) x = 0.0, **b**) x = 1.0 and **c**) x = 1.5. There is a contraction of certain O-O distances as the compound is desodiated, as well as a shortening of the Fe-O distances, consistent with redox contributions from both Fe and O. At x = 1.5, there is a disproportionation between two distinct FeO₄-tetrahedra, where one is essentially unchanged from x = 1.0 and the other has further contraction of both O-O and Fe-O distances.

2 Supplementary tables

Table S1:	: List	of all s	starting	geomet	ries a	and their	r corr	espon	Iding	space	e grou	ps.	The re	efere	nce
structure	along	with i	its Mate	rials Pr	oject	- (mp) o	or ICS	SD-id	entifie	er is	given	dep	ending	g on	the
source.															

Label	Space group	Crystal system	Reference compound	Reference
C2/m	<i>C2/m</i> (12)	Monoclinic	Li ₅ AuO ₄	mp-1222442
<i>P</i> 2 ₁ / <i>c</i> #1	$P2_{1}/c$ (4)		Rb ₅ FeO ₄	mp-770083
$P2_{1}/c$ #2			Li ₅ FeO ₄	mp-771402
<i>P</i> 2 ₁ / <i>c</i> #3			Cs ₅ FeO ₄	ICSD-414483
<i>P</i> 2 ₁ / <i>c</i> #4			Rb ₅ FeO ₄	mp-770716
Aea2	Aea2 (41)	Orthorhombic	Li ₅ CoO ₄	mp-775093
Fddd	<i>Fddd</i> (70)		Li ₅ AuO ₄	mp-757242
<i>Pbca</i> #1	<i>Pbca</i> (61)		Na ₅ FeO ₄	ICSD-2485
Pbca #2			Na ₅ CrO ₄	mp-780922
Pmmn	Pmmn (59)		Na ₅ CrO ₄	mp-780916
$Pmn2_1$	<i>Pmn</i> 2 ₁ (31)		Na ₅ MnO ₄	ICSD-47101
Pnnm	<i>Pnnm</i> (58)		Li ₅ CoO ₄	mp-773454
P4 ₁ 2 ₁ 2	<i>P</i> 4 ₁ 2 ₁ 2 (92)	Tetragonal	Na ₅ LaO ₄	mp-37207
$P4_2/nmc$	<i>P</i> 4 ₂ / <i>nmc</i> (137)		Li ₅ GaO ₄	mp-780218
<i>P</i> 1	<i>P</i> 1 (1)	Triclinic	Li ₅ FeO ₄	mp-780192
$P\bar{1}$	$P\bar{1}$ (2)		K ₅ InO ₄	ICSD-74911

Structure	ΔE [eV f.u. $^{-1}$]	V_0 [Å 3 f.u. $^{-1}$]	<i>B</i> ₀ [GPa]	B'_0
Pmmn (β)	0.000	148.25	53	4.87
Pbca #2 (α)	0.027	147.36	52	5.71
Pbca #1 (γ)	0.086	144.77	47	4.33
$Pmn2_1$	0.131	142.36	53	5.44
<i>P</i> 2 ₁ / <i>c</i> #1	0.160	146.05	42	6.29
<i>P</i> 2 ₁ / <i>c</i> #3	0.168	148.44	49	5.84
<i>P2</i> ₁ / <i>c</i> #2	0.283	141.64	47	5.54
Aea2	0.355	147.43	53	3.08
Pnnm	0.367	144.94	39	5.95
<i>P</i> 1	0.402	150.22	48	4.73
<i>P</i> 2 ₁ / <i>c</i> #4	0.604	148.66	39	5.37
P4 ₂ /nmc	0.933	152.97	45	5.87
Fddd	1.159	145.38	53	3.83
C2/m	1.173	145.69	52	3.20
$P\bar{1}$	1.528	130.59	56	3.24
$P4_{1}2_{1}2$	1.900	150.31	45	10.92

Table S2: Overview of the relative equilibrium energies (ΔE) with respect to the most stable structure (β), the equilibrium volumes (V_0), the bulk moduli (B_0) and its pressure derivative (B'_0) of all starting geometries

		XX	YY	ZZ	XY	XZ	YZ
β -Na ₅ FeO ₄	XX	890.63	321.25	395.46	0.0	0.0	0.0
	YY	321.25	968.50	306.13	0.0	0.0	0.0
	ZZ	395.46	306.13	951.53	0.0	0.0	0.0
	XY	0.0	0.0	0.0	193.10	0.0	0.0
	XZ	0.0	0.0	0.0	0.0	338.76	0.0
	YZ	0.0	0.0	0.0	0.0	0.0	148.86
		XX	YY	ZZ	XY	XZ	YZ
α -Na ₅ FeO ₄	XX	782.13	396.78	353.29	0.0	0.0	0.0
	YY	396.78	799.82	381.03	0.0	0.0	0.0
	ZZ	353.29	381.03	894.43	0.0	0.0	0.0
	XY	0.0	0.0	0.0	304.24	0.0	0.0
	XZ	0.0	0.0	0.0	0.0	315.73	0.0
	YZ	0.0	0.0	0.0	0.0	0.0	279.05
		XX	YY	ZZ	XY	XZ	YZ
γ -Na ₅ FeO ₄	XX	704.97	278.57	326.51	0.0	0.0	0.0
	YY	278.57	907.28	307.65	0.0	0.0	0.0
	ZZ	326.511	307.65	874.496	0.0	0.0	0.0
	XY	0.0	0.0	0.0	275.68	0.0	0.0
	XZ	0.0	0.0	0.0	0.0	286.97	0.0
	YZ	0.0	0.0	0.0	0.0	0.0	260.57

Table S3: The full symmetrised elastic moduli for all three polymorphs

Phase	Lattice	e paramet	ers [Å]		Wyckoff si	te occupa	tion	
	a	b	с	Site label	Wyckoff site	\boldsymbol{x}	\boldsymbol{y}	z
β-Na ₅ FeO ₄	7.228	7.472	5.473	Na1	8g	0.4892	0.4434	0.2575
Pmmn				Na2	2b	0.2500	0.7500	0.1865
				Fe1	2a	0.2500	0.2500	0.7815
				01	4e	0.4739	0.4688	-0.0270
				O2	4f	0.4739	0.25000	0.5904
γ -Na ₅ FeO ₄	10.523	6.023	18.196	Na1	8 <i>c</i>	0.1738	0.6039	0.8286
Pbca	(10.334)	(5.974)	(18.082)	Na2	8c	0.0609	0.5827	0.4350
				Na3	8c	0.4221	0.6002	0.7522
				Na4	8c	0.3359	0.5906	0.5024
				Na5	8c	0.3010	0.5758	0.1408
				Fe1	8c	0.0400	0.6730	0.1236
				01	8c	0.3643	0.7635	0.3746
				O2	8c	0.1257	0.7655	0.2124
				O3	8c	0.1327	0.6968	0.5450
				O4	8 <i>c</i>	0.4522	0.6419	0.6213
α -Na ₅ FeO ₄	10.597	10.360	10.710	Na1	8 <i>c</i>	0.1067	0.1682	0.6156
Pbca				Na2	8c	0.1160	0.6437	0.4005
				Na3	8c	0.1204	0.6034	0.6637
				Na4	8c	0.1220	0.0852	0.3566
				Na5	8c	0.1529	0.1380	0.8840
				Fe1	8c	0.1466	0.6136	0.1300
				O1	8c	0.0250	0.7271	0.0493
				O2	8c	0.0512	0.5028	0.2426
				O3	8c	0.2420	-0.0011	0.5214
				O4	8c	0.2452	0.7223	0.2392

Table S4: Structural data for the three low energy polymorphs identified in the calculations. Experimental values for the γ -polymorph (ICSD #2485) given in parenthesis

Table S5: Summary of vacancy jumps, identified by which symmetry equivalent sites the jump is between and with jump length (Å) based on the distance between the sites in the equilibrium structure, jump barriers (eV) calculated using the cNEB method and diffusion coefficients (cm² s⁻¹) calculated at 300 K according to equation 4. Jumps marked with asterisk are not properly described as a vacancy jump.

Phase	Jump	Label	Length	Barrier	Diffusion coefficient
β	Na1-Na1	01	2.79	0.207	$2.7 imes10^{-6}$
	Na1-Na1	02	2.89	0.036	$2.1 imes10^{-3}$
	Na1-Na2	03	2.90	0.301	$7.3 imes 10^{-8}$
	Na1-Na1	04	2.95	0.405	$1.4 imes10^{-9}$
α	Na3-Na4	01	2.84	0.076	$4.3 imes 10^{-4}$
	Na2-Na3	02	2.85	0.295	$8.9 imes10^{-8}$
	Na1-Na4	03	2.91	0.350	$1.1 imes 10^{-8}$
	Na2-Na4	04	2.88	0.425	$6.0 imes10^{-10}$
	Na1-Na5	05	2.93	0.405	$1.4 imes10^{-9}$
	Na2-Na5	06	2.95	0.373	$4.7 imes10^{-9}$
	Na4-Na5	07	2.90	0.470	$1.1 imes 10^{-10}$
	Na1-Na3	08	3.01	0.360	$8.0 imes10^{-9}$
	Na3-Na5	09	2.96	0.443	$3.1 imes 10^{-10}$
	Na1-Na2*	10	3.07	0.071	$6.0 imes10^{-4}$
γ	Na2-Na2	01	2.87	0.120	$8.0 imes10^{-5}$
	Na1-Na2	02	2.95	0.072	$5.5 imes10^{-4}$
	Na1-Na3*	03	2.96	0.035	$2.2 imes10^{-3}$
	Na1-Na3	04	3.03	0.364	$7.0 imes 10^{-9}$

Table S6: Summary of the percolating diffusion paths of jumps between Na-sites, where the distance between each Na⁺-ion is less than 3 Å, as calculated using the cNEB-method. The path is described by which symmetry equivalent Na⁺-ions, as detailed in Table S4, are involved in each path. For each diffusion path, the direction of the net movement, the overall activation barrier (E_a) associated with the energy path and the diffusion coefficient at 300 K (D_{Na^+}) as calculated from Equation 4 using the limiting jump along the path. Diffusion paths marked with an asterisk (*) include jumps which are not properly described as a vacancy jump, and values are for this reason more uncertain.

No.	Path	Direction	E_a [eV]	$D_{Na^+}(T = 300 \text{ K}) \text{ [cm}^2 \text{ s}^{-1}\text{]}$
1	$Na1 \rightarrow Na1 \rightarrow Na1$	[110]	0.206	$2.7 imes10^{-6}$
2	$\begin{array}{c} Na1 \rightarrow Na2 \\ \rightarrow Na1 \rightarrow Na1 \end{array}$	[110]	0.301	$7.3 imes 10^{-8}$
4	$\begin{array}{c} Na1 \rightarrow Na2 \\ \rightarrow Na1 \rightarrow Na1 \end{array}$	[110]	0.405	$1.4 imes 10^{-9}$
3	$Na1 \rightarrow Na1 \rightarrow Na1$	[110]	0.406	$1.4 imes 10^{-9}$
5	$Na1 \rightarrow Na1 \rightarrow Na1$	[001]	0.406	$1.4 imes 10^{-9}$
1	$\begin{array}{c} Na3 \rightarrow Na4 \\ \rightarrow Na2 \rightarrow Na3 \end{array}$	[001]	0.434	$6.0 imes10^{-10}$
2	${f Na5} ightarrow {f Na4} \ ightarrow {f Na2} ightarrow {f Na5}$	[010]	0.470	$1.1 imes 10^{-10}$
3	$\begin{array}{l} Na3 \rightarrow Na4 \rightarrow Na1 \\ \rightarrow Na5 \rightarrow Na2 \rightarrow Na3 \end{array}$	[001]	0.478	$1.1 imes 10^{-10}$
4*	$\begin{array}{l} Na1 \rightarrow Na3 \rightarrow Na4 \\ \rightarrow Na2 \rightarrow Na2 \rightarrow Na1 \end{array}$	[100]	≥ 0.521	$\leq 1.1 \times 10^{-10}$
1*	$Na1 \rightarrow Na3 \rightarrow Na1$	[100]	≥ 0.387	$\leq 7.0 imes 10^{-9}$
2*	$\begin{array}{l} Na1 \rightarrow Na3 \rightarrow Na1 \\ \rightarrow Na2 \rightarrow Na2 \rightarrow Na1 \end{array}$	[001]	≥ 0.424	$\leq 7.0 imes 10^{-9}$
	No. 1 2 4 3 5 1 2 4 3 5 1 2 3 4* 1* 2*	No.Path1Na1 \rightarrow Na1 \rightarrow Na12Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na14Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na13Na1 \rightarrow Na1 \rightarrow Na13Na1 \rightarrow Na1 \rightarrow Na11Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na32Na5 \rightarrow Na4 \rightarrow Na2 \rightarrow Na53Na3 \rightarrow Na4 \rightarrow Na1 \rightarrow Na2 \rightarrow Na2 \rightarrow Na34*Na1 \rightarrow Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na2 \rightarrow Na11*Na1 \rightarrow Na3 \rightarrow Na1 $2*$ Na1 \rightarrow Na3 \rightarrow Na1 \rightarrow Na2 \rightarrow Na2 \rightarrow Na1	No.PathDirection1Na1 \rightarrow Na1 \rightarrow Na1[110]2Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na1[110]4Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na1[110]3Na1 \rightarrow Na1 \rightarrow Na1[110]5Na1 \rightarrow Na1 \rightarrow Na1[001]1Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na3[001]2Na5 \rightarrow Na4 \rightarrow Na2 \rightarrow Na5[010]3Na3 \rightarrow Na4 \rightarrow Na1 \rightarrow Na2 \rightarrow Na5[001]4*Na1 \rightarrow Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na3[001]1*Na1 \rightarrow Na3 \rightarrow Na1 \rightarrow Na2 \rightarrow Na1[100]2*Na1 \rightarrow Na3 \rightarrow Na1 \rightarrow Na2 \rightarrow Na2 \rightarrow Na1[001]	No. Path Direction E_a [eV] 1 Na1 \rightarrow Na1 \rightarrow Na1 [110] 0.206 2 Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na1 [110] 0.301 4 Na1 \rightarrow Na2 \rightarrow Na1 \rightarrow Na1 [110] 0.405 3 Na1 \rightarrow Na1 \rightarrow Na1 [110] 0.406 5 Na1 \rightarrow Na1 \rightarrow Na1 [001] 0.406 1 Na3 \rightarrow Na4 \rightarrow Na1 [001] 0.434 \rightarrow Na2 \rightarrow Na3 [001] 0.470 3 Na3 \rightarrow Na4 \rightarrow Na1 \rightarrow Na2 \rightarrow Na3 [001] 0.478 4* Na1 \rightarrow Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na3 [001] 0.478 4* Na1 \rightarrow Na3 \rightarrow Na4 \rightarrow Na2 \rightarrow Na3 [100] \geq 0.521 1* Na1 \rightarrow Na3 \rightarrow Na1 \rightarrow Na2 \rightarrow Na2 \rightarrow Na1 [001] \geq 0.424

Table S7: Structural data for the phases found along the convex hull in the cycling interval $Na_5FeO_4 \rightleftharpoons Na_{3.5}FeO_4 + 1.5 Na^+$. The pristine phase, Na_5FeO_4 is not given here and can be found in Table S4.

Phase	Lattice pa	aramete	rs [Å]		Wyckoff si	te occupa	tion	
	a	b	c	Site label	Wyckoff site	\boldsymbol{x}	\boldsymbol{y}	z
Na ₄ FeO ₄	5.817	5.826	8.374	Na1	2i	0.0494	0.7242	0.4321
$P\bar{1}$	$\alpha = 87.923$			Na2	2i	0.2099	0.7458	0.0193
	$\beta = 72.036$			Na3	2i	0.2394	0.2369	0.1697
	$\gamma = 69.133$			Na4	2i	0.4146	0.7849	0.6275
				Fe1	2i	0.4040	0.2834	0.7504
				01	2i	0.5618	0.4784	0.8019
				O2	2i	0.3144	-0.0310	0.3820
				O3	2i	0.8297	0.4984	0.3393
				O4	2i	0.7640	0.8875	0.1003
Na _{3.5} FeO ₄	9.561	9.090	11.159	Na1	2a	0.5282	0.6410	0.1241
$P2_1$	$\beta = 95.854$			Na2	2a	0.4721	0.3728	0.3754
				Na3	2a	-0.0673	0.7083	0.8825
				Na4	2a	0.0688	0.3054	0.6183
				Na5	2a	0.2176	0.1768	0.3667
				Na6	2a	0.8107	0.0616	0.8968
				Na7	2a	0.4104	-0.0273	0.1228
				Na8	2a	0.5885	0.0407	0.3771
				Na9	2a	0.2175	0.3389	0.8673
				Na10	2a	0.8111	0.4536	0.3965
				Na11	2a	0.1528	0.5177	0.3779
				Na12	2a	0.8479	0.4978	0.1214
				Na13	2a	0.2949	0.6659	0.8719
				Na14	2a	0.7069	0.3483	0.6285
				Fe1	2a	0.1083	0.8647	0.1272
				Fe2	2a	0.8920	0.1504	0.3731
				Fe3	2a	0.3744	0.2083	0.6176
				Fe4	2a	0.6263	0.8054	0.8827
				01	2a	0.0690	0.7196	0.2269
				02	2a	-0.0664	0.2956	0.2748
				03	2a	0.5059	0.3059	0.7138
				O4	2a	0.4958	0.7065	0.7864
				05	2a	-0.0212	-0.0568	0.0209
				06	2a	0.0208	0.0735	0.4803
				07	2a	0.3893	0.0511	0.5173
				08	2a	0.6100	-0.0383	-0.0163
				09	2a	0.1817	0.5178	0.7267
				010	2a	0.8182	0.4984	0.7734
				011	2a	0.2681	0.3788	0.2303
				012	2a	0.7326	0.6373	0.2693
				18	2a	0.2295	0.7989	0.0278
				014	2a	0.7697	0.2150	0.4/10
				015	2a	0.3008	0.3445	0.5107
				016	2a	0.7002	0.6691	-0.0107

Phase	Lattice pa	arameters	s [Å]		Wyckoff si	te occupa	tion	
	a	b	c	Site label	Wyckoff site	\boldsymbol{x}	y	\boldsymbol{z}
Na _{3.5} FeO ₃	6.027	6.407	6.276	Na1	1 <i>a</i>	0.9907	0.3781	0.2207
P1	$\alpha = 120.488$			Na2	1a	0.7806	0.0002	0.8254
	$\beta = 91.058$			Na3	1a	0.6611	0.6998	0.1807
	$\gamma = 88.168$			Na4	1a	0.3646	0.3112	0.8779
				Na5	1a	0.3503	-0.0100	0.1333
				Na6	1a	0.0314	0.6263	0.8399
				Na7	1a	0.0271	0.0592	0.4870
				Fe1	1a	0.3283	0.7086	0.5166
				Fe2	1a	0.6171	0.3519	0.5171
				O1	1a	0.7355	0.0746	0.2271
				O2	1a	0.7413	0.3569	0.8028
				O3	1a	0.6841	0.6360	0.5060
				O4	1a	0.2918	0.3621	0.5142
				O5	1a	0.2362	0.6799	0.2016
				O6	1a	0.1782	0.9721	0.8044
Na ₃ FeO ₃	5.860	12.750	6.268	Na1	4 <i>e</i>	0.0502	0.2221	0.1953
$P2_1/c$	$\beta = 121.849$			Na2	4e	0.0360	0.4845	0.2807
				Na3	4e	0.5740	0.5946	0.8588
				Fe1	4e	0.5772	0.3357	0.7564
				O1	4e	-0.0588	0.3733	-0.0508
				O2	4e	0.6806	-0.0617	0.8019
				O3	4e	0.4776	0.7284	0.5497
Na ₂ FeO ₃	5.376	9.302	11.060	Na1	8 <i>f</i>	0.7619	0.0784	0.5003
C2/c	$\beta = 99.575$			Na2	4d	0.2500	0.2500	0.5000
				Na3	4e	0.0000	0.0866	0.2500
				Fe1	4e	0.0000	0.7545	0.2500
				Fe2	4e	0.0000	0.4206	0.2500
				01	8 <i>f</i>	0.8493	0.1023	0.8538
				O2	8 <i>f</i>	0.5857	0.0837	0.1491
				O3	8 <i>f</i>	0.6508	0.2224	0.6494

Table S8: Structural data for the phases found along the convex hull in the cycling interval $Na_{3.5}FeO_3 \rightleftharpoons Na_2FeO_3 + 1.5 Na^+$.

Label	Desodiation level	Stoichiometry	Formation enthalpy	Vacancy concentration
β -NFO	0.0	Na ₅ FeO _{3.9375}	4.41	1.56 %
	0.5	Na _{4.5} FeO _{3.9375}	1.64	1.56 %
	1.0	Na ₄ FeO _{3.9375}	-0.46	1.56 %
	1.5	Na _{3.5} FeO _{3.9375}	0.18	1.56 %
	2.0	Na ₃ FeO _{3.9375}	0.56	1.56 %
	2.5	Na _{2.5} FeO _{3.9375}	-0.31	1.56 %
	3.0	Na ₂ FeO _{3.9375}	0.91	1.56 %
α -NFO	0.0	Na5FeO3.875	4.26	3.13 %
	0.5	Na _{4.5} FeO _{3.875}	1.96	3.13 %
	1.0	Na ₄ FeO _{3.9375}	1.03	1.56 %
	1.5	Na _{3.5} FeO _{3.875}	0.08	3.13 %
	2.0	Na ₃ FeO _{3.875}	-0.39	3.13 %
	2.5	Na _{2.5} FeO _{3.875}	-0.26	3.13 %
	3.0	Na ₂ FeO _{3.9375}	-0.20	1.56 %
γ -NFO	0.0	Na5FeO3.9375	4.21	1.56 %
	0.5	Na _{4.5} FeO _{3.9375}	1.35	1.56 %
	1.0	Na ₄ FeO _{3.9375}	1.43	1.56 %
	1.5	Na _{3.5} FeO _{3.9375}	-2.66	1.56 %
	2.0	Na ₃ FeO _{3.9375}	-1.37	1.56 %
	2.5	Na _{2.5} FeO _{3.9375}	-0.37	1.56 %
	3.0	Na ₂ FeO _{3.9375}	0.34	1.56 %
Convex hull #1	0.0	Na5FeO3.875	4.41	3.13 %
	1.0	Na ₄ FeO _{3.875}	1.31	3.13 %
	1.5	Na _{3.5} FeO _{3.875}	0.05	3.13 %
Convex hull #2	1.5	Na _{3.5} FeO _{2.9375}	4.19	2.08 %
	2.0	Na ₃ FeO _{2.9375}	3.43	2.08 %
	3.0	Na ₂ FeO _{2.9688}	0.46	1.04 %

Table S9: Summary of vacancy formation enthalpies (in eV) and vacancy concentrations (% of total oxygen in the unit cell removed) for each structure at varying levels of desodiation (*x* in $Na_{5-x}FeO_4$).

Table S10: Electronic band gaps (in eV) for all polymorphs obtained from GGA+U calculations. In all cases the total band gap comes from states in the spin up channel. All band gaps are direct, but in the valence band there are states close to E_F along the full path in BZ.

Phase	$\mathbf{E}_{g,TOT}$	$\mathbf{E}_{g,UP}$	$\mathbf{E}_{g,DOWN}$	Kind
β	1.98	1.98	2.49	Direct
α	1.94	1.94	2.47	Direct
γ	1.99	1.99	2.46	Direct