Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Structure-based design and synthesis of a novel long-chain 4"-alkyl ether derivative of EGCG as potent EGFR inhibitor: *In-vitro and in-silico* studies

Satyam Singh¹, Revathy Sahadevan², Rajarshi Roy¹, Mainak Biswas³, Priya Ghosh¹, Parimal Kar¹, Avinash Sonawane¹, Sushabhan Sadhukhan^{2,4,5*}

¹Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.

²Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India.

³School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Orissa 751 024, India.

⁴Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala 678 623, India.

⁵Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.

*Corresponding author. *E-mail address*: <u>sushabhan@iitpkd.ac.in</u>

Table of Contents

1.	Characterization of 4"-alkyl EGCG derivatives	4
2.	HPLC analysis of 4"-alkyl EGCG derivatives	6
	Fig. S1. HPLC chromatogram of 4"-C ₆ EGCG	7
	Fig. S2. HPLC chromatogram of 4"-C ₈ EGCG	7
	Fig. S3. HPLC chromatogram of 4"-C ₁₀ EGCG.	7
	Fig. S4. HPLC chromatogram of 4"-C ₁₂ EGCG	8
	Fig. S5. HPLC chromatogram of 4"-C ₁₄ EGCG.	8
	Fig. S6. HPLC chromatogram of 4"-C ₁₆ EGCG	8
	Fig. S7. HPLC chromatogram of 4"-C ₁₈ EGCG	9
3.	Mass spectra of 4''-alkyl EGCG derivatives	9
	Fig. S8. Mass spectrum of 4"-C ₆ EGCG	9
	Fig. S9. Mass spectrum of 4"-C ₈ EGCG	9
	Fig. S10. Mass spectrum of 4"-C ₁₀ EGCG	10
	Fig. S11. Mass spectrum of 4"-C ₁₂ EGCG	10
	Fig. S12. Mass spectrum of 4"-C ₁₄ EGCG	10
	Fig. S13. Mass spectrum of 4"-C ₁₆ EGCG	11
	Fig. S14. Mass spectrum of 4"-C ₁₈ EGCG	11
4.	¹ H NMR spectra of 4''-alkyl EGCG derivatives	11
	Fig. S15. ¹ H NMR spectrum of 4"-C ₆ EGCG.	12
	Fig. S16. ¹ H NMR spectrum of 4"-C ₈ EGCG.	12
	Fig. S17. ¹ H NMR spectrum of 4"-C ₁₀ EGCG.	13
	Fig. S18. ¹ H NMR spectrum of 4"-C ₁₂ EGCG.	13
	Fig. S19. ¹ H NMR spectrum of 4"-C ₁₄ EGCG.	14
	Fig. S20. ¹ H NMR spectrum of 4"-C ₁₆ EGCG.	14
	Fig. S21. ¹ H NMR spectrum of 4"-C ₁₈ EGCG.	15
5.	¹³ C NMR spectra of 4''-alkyl EGCG derivatives	15
	Fig. S22. 13 C NMR spectrum of 4"-C ₆ EGCG.	15
	Fig. S23. ¹³ C NMR spectrum of 4"-C ₈ EGCG.	16
	Fig. S24. ¹³ C NMR spectrum of 4"-C ₁₀ EGCG.	16
	Fig. S26. ¹³ C NMR spectrum of 4"- C_{14} EGCG.	17
	Fig. S28. ¹³ C NMR spectrum of 4"- C_{18} EGCG.	18
6.	FTIR spectra of 4''-alkyl EGCG derivatives	19
	Fig. S29. FTIR spectrum of 4"-C ₆ EGCG.	19

Fig.	\$30. FTIR spectrum of 4"-C ₈ EGCG
Fig.	S31. FTIR spectrum of 4"-C ₁₀ EGCG20
Fig.	S32. FTIR spectrum of 4"-C ₁₂ EGCG20
Fig.	S33. FTIR spectrum of 4"-C ₁₄ EGCG20
Fig.	S34. FTIR spectrum of 4"-C ₁₆ EGCG21
Fig.	S35. FTIR spectrum of 4"-C ₁₈ EGCG
7. St	ability assay
Fig \$ 7.4	\$36 : UV-Viscible absorption spectra of EGCG and 4"-C ₁₄ EGCG in PBS buffer of pH
8. M	ID simulation data23
Fig. EGC	\$37. MD simulation to analyse the interaction between EGFR and EGCG/4"-C14 CG
Fig. ligar	S38. The center of mass distance and the number of hydrogen bonds calculated between nd and protein
Fig.	S39. Binding free energy (kcal/mol) for the receptor-ligand complexes
Fig.	S40. Ligand-protein 2D interaction profiles
Tab	le S1. Decomposition of the binding free energy (kcal/mol) in residue level27

1. Characterization of 4"-alkyl EGCG derivatives

1. 4"-hexyl EGCG (4"-C₆ EGCG)

The compound was obtained with 60 % yield. MS (ESI): m/z calculated for $[C_{28}H_{30}O_{11} + H]^+ = 543.18$, observed = 543.25. FTIR (cm⁻¹): 3354, 2963, 2924, 1690, 1605, 1520, 1458, 1342, 1258, 1234, 1188, 1142, 1096, 1020, 857, 802, 733, 624, 532. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.84 (3H, t, *J* = 7.05 Hz), 1.24-1.35 (6H, overlapping), 1.61 (2H, m), 2.65 (1H, dd, *J* = 17.00 Hz, 4.20 Hz), 2.93 (1H, dd, *J* = 17.32 Hz, 4.00 Hz), 3.89 (2H, t, *J* = 6.80 Hz), 4.96 (1H, m), 5.38 (1H, bs), 5.83 (1H, bs), 5.92 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.44, 156.97, 156.92, 156.01, 151.11, 146.08, 139.42, 132.82, 129.05, 124.59, 109.15, 105.92, 97.78, 96.04, 94.82, 76.84, 72.31, 68.91, 31.51, 31.10, 29.80, 26.11, 25.35, 22.49, 14.34.

2. 4"-octyl EGCG (4"-C₈ EGCG)

The compound was obtained with 66 % yield. MS (ESI): m/z calculated for $[C_{30}H_{34}O_{11} + H]^+ = 571.21$, observed = 571.30. FTIR (cm⁻¹): 3348, 2924, 2854, 1690, 1605, 1520, 1458, 1342, 1234, 1188, 1143, 1095, 1025, 863, 818, 764, 726, 463. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.84 (3H, t, *J* = 7.05 Hz), 1.22-1.27 (8H, overlapping), 1.33 (2H, m), 1.61 (2H, m), 2.64 (1H, dd, *J* = 16.65 Hz, 3.50 Hz), 2.93 (1H, dd, *J* = 16.65 Hz, 3.50 Hz), 3.88 (2H, t, *J* = 6.80 Hz), 4.97 (1H, m), 5.37 (1H, bs), 5.83 (1H, bs), 5.92 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.43, 156.92, 156.88, 156.01, 151.11, 146.08, 139.41, 132.82, 129.04, 124.58, 109.15, 105.92, 97.78, 96.04, 94.82, 76.84, 72.28, 68.90, 31.66, 30.00, 29.84, 29.09, 25.70, 22.51, 14.38.

*3. 4"-decyl EGCG (4"-C*₁₀ *EGCG)*

The compound was obtained with 72 % yield. MS (ESI): m/z calculated for $[C_{32}H_{38}O_{11} + H]^+ = 599.24$, observed = 599.35. FTIR (cm⁻¹): 3350, 2924, 2855, 1690, 1605, 1520, 1458, 1342, 1234, 1188, 1140, 1095, 1024, 865, 810, 764, 717, 520. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.84 (3H, t, *J* = 7.05 Hz), 1.22-1.32 (12H, overlapping), 1.35 (2H, m), 1.61 (2H, m), 2.65 (1H, dd, *J* = 17.50 Hz, 3.98 Hz), 2.93 (1H, dd, *J* = 16.80 Hz, 4.00 Hz), 3.88 (2H, t, *J* = 6.80), 4.95 (1H, m), 5.38 (1H, bs), 5.83 (1H, bs), 5.93 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.43, 156.97, 156.92, 156.01, 151.10, 146.08,

139.41, 132.82, 129.05, 124.59, 109.15, 105.92, 97.79, 96.04, 94.82, 76.84, 72.30, 68.90, 31.72, 29.84, 29.38, 29.12, 26.11, 25.69, 22.52, 14.38.

4. 4" dodecyl-EGCG (4"-C₁₂ EGCG)

The compound was obtained with 75 % yield. MS (ESI): m/z calculated for $[C_{34}H_{42}O_{11} + H]^+ = 627.27$, observed = 627.35. FTIR (cm⁻¹): 3356, 2924, 2855, 1690, 1605, 1520, 1458, 1342, 1234, 1188, 1141, 1095, 1018, 865, 810, 764, 724, 455. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.85 (3H, t, *J* = 7.05 Hz), 1.18-1.23 (16H, overlapping), 1.33 (2H, m), 1.61 (2H, m), 2.65 (1H, dd, *J* = 21.80 Hz, 4.70 Hz), 2.93 (1H, dd, *J* = 17.00 Hz, 4.20 Hz), 3.88 (2H, t, *J* = 6.80 Hz), 4.96 (1H, m), 5.38 (1H, bs), 5.83 (1H, bs), 5.93 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.42, 156.99, 156.93, 156.03, 151.12, 146.10, 139.42, 132.83, 129.02, 124.59, 109.15, 105.92, 97.77, 96.03, 94.82, 76.84, 72.29, 68.87, 31.74, 30.03, 29.87, 29.45, 29.14, 25.72, 22.53, 14.40.

5. 4" tetradecyl-EGCG (4"-C₁₄ EGCG)

The compound was obtained with 70 % yield. MS (ESI): m/z calculated for $[C_{36}H_{46}O_{11} + H]^+ = 655.30$, observed = 655.40. FTIR (cm⁻¹): 3356, 2924, 2854, 1689, 1604, 1520, 1458, 1342, 1234, 1188, 1141, 1095, 1030, 865, 802, 763, 624, 527. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.85 (3H, t, J = 7.05 Hz), 1.18-1.30 (20H, overlapping), 1.35 (2H, m), 1.61 (2H, m), 2.65 (1H, dd, J = 19.20 Hz, 3.20 Hz), 2.93 (1H, dd, J = 17.40 Hz, 3.90 Hz), 3.88 (2H, t, J = 6.80 Hz), 4.97 (1H, m), 5.38 (1H, bs), 5.83 (1H, bs), 5.93 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.42, 156.99, 156.93, 156.02, 151.11, 146.09, 139.42, 132.82, 129.04, 124.59, 109.15, 105.92, 97.78, 96.04, 94.82, 76.84, 72.29, 68.89, 31.73, 31.11, 29.87, 29.48, 29.44, 25.72, 22.53, 14.38. A combination of ¹H and ¹³C NMR experiment was done by means of Heteronuclear Multiple-Bond Correlation method (HMBC) as shown in Fig. 2. The cross peak connecting 4" carbon and the protons from the -OCH₂- of the alkyl chain (as highlighted in the inset of Fig. 2) confirms that they are directly connected through the ethereal bond.

6. 4"-hexadecyl EGCG (4"-C₁₆ EGCG)

The compound was obtained with 50 % yield. MS (ESI): m/z calculated for $[C_{38}H_{50}O_{11} + H]^+ = 683.34$, observed = 683.35. FTIR (cm⁻¹): 3364, 2924, 2855, 1690, 1605, 1520, 1458,

1342, 1234, 1155, 1142, 1095, 1034, 868, 818, 764, 718, 462. 1H NMR (500 MHz, DMSOd₆): δ (ppm)= 0.85 (3H, t, *J* = 7.05 Hz), 1.23 (24H, overlapping), 1.34 (2H, m), 1.61 (2H, m), 2.65 (1H, dd, *J* = 15.40 Hz, 3.35 Hz), 2.93 (1H, dd, *J* = 16.70 Hz, 3.85 Hz), 3.88 (2H, t, *J* = 7.00 Hz), 4.96 (1H, m), 5.38 (1H, bs), 5.82 (1H, bs), 5.93 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.44, 156.95, 156.91, 155.99, 151.08, 146.05, 139.41, 132.80, 129.05, 124.58, 109.14, 105.92, 97.79, 96.04, 94.82, 76.84, 72.31, 68.91, 31.71, 29.96, 29.84, 29.44, 29.10, 25.69, 22.51, 14.36.

7. 4"-octadecyl EGCG (4"-C₁₈ EGCG)

The compound was obtained with 52 % yield. MS (ESI): m/z calculated for $[C_{40}H_{54}O_{11} + H]^+ = 711.37$, observed = 711.35. FTIR (cm⁻¹): 3364, 2924, 2855, 1690, 1605, 1520, 1458, 1342, 1234, 1188, 1142, 1095, 1034, 866, 818, 764, 717, 463. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm)= 0.85 (3H, t, *J* = 6.65 Hz), 1.19-1.29 (28H, overlapping), 1.33 (2H, m), 1.61 (2H, m), 2.66 (1H, dd, *J* = 14.50 Hz, 4.10 Hz), 2.93 (1H, dd, *J* = 14.90 Hz, 4.15 Hz), 3.88 (2H, t, *J* = 7.00 Hz), 4.98 (1H, m), 5.38 (1H, bs), 5.82 (1H, bs), 5.93 (1H, bs), 6.40 (2H, s), 6.81 (2H, s). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm)= 165.44, 156.93, 155.76, 151.09, 146.06, 139.41, 132.80, 129.04, 124.88, 109.14, 105.92, 96.62, 94.91, 72.30, 31.70, 29.97, 29.83, 29.42, 29.40, 29.27, 25.69, 22.51, 14.37.

2. HPLC analysis of 4"-alkyl EGCG derivatives

Purity analysis was carried out using Shimadzu HPLC-20AP instrument with a Sprite TARGA C18 column (40×2.1 mm, 5 µm) monitoring at 210 and 254 nm. Solvents for the HPLC were water with 0.1% acetic acid (solvent A) and acetonitrile with 0.1% acetic acid (solvent B). Compounds were eluted at a flow rate of 0.7 mL/min with a gradient of 5% solvent B for 1 min, followed by a linear gradient from 5% to 60% solvent B over 4 min, continued for 1 min, followed by changing the solvent B from 60% to 95% in 3 min, continued for another 3 min, and finally, it was brought down to 5% solvent B in 1.5 min and then continued for another 1.5 min before the method stopped. Column was always washed with 50% Solvent B followed by 95% Solvent B before sample injection.

Fig. S1. HPLC chromatogram of 4"-C₆ EGCG.

Fig. S2. HPLC chromatogram of 4"-C₈ EGCG.

Fig. S3. HPLC chromatogram of 4"-C₁₀ EGCG.

Fig. S4. HPLC chromatogram of 4"-C₁₂ EGCG.

Fig. S5. HPLC chromatogram of 4"-C₁₄ EGCG.

Fig. S6. HPLC chromatogram of 4"-C₁₆ EGCG.

Fig. S7. HPLC chromatogram of 4"-C₁₈ EGCG.

3. Mass spectra of 4"-alkyl EGCG derivatives

Fig. S8. Mass spectrum of 4"-C₆ EGCG (Exact mass 542.18 Da).

Fig. S9. Mass spectrum of 4"-C₈ EGCG (Exact mass 570.21 Da).

Fig. S10. Mass spectrum of 4"-C₁₀ EGCG (Exact mass 598.24 Da).

Fig. S11. Mass spectrum of 4"-C₁₂ EGCG (Exact mass 626.27 Da).

Fig. S12. Mass spectrum of 4"-C₁₄ EGCG (Exact mass 654.30 Da).

Fig. S13. Mass spectrum of 4"-C₁₆ EGCG (Exact mass 682.34 Da).

Fig. S14. Mass spectrum of 4"-C₁₈ EGCG (Exact mass 710.37 Da)

4. ¹H NMR spectra of 4''-alkyl EGCG derivatives

¹H, ¹³C, and HMBC NMR were recorded in Bruker AVANCE III 500 FT NMR spectrometer. Peaks at 3.5, 2.5 and 2.09 ppm are from residual H₂O, DMSO, acetone respectively.

Fig. S15. ¹H NMR spectrum of 4"-C₆ EGCG.

Fig. S16. ¹H NMR spectrum of 4"-C₈ EGCG.

Fig. S17. ¹H NMR spectrum of 4"- C_{10} EGCG.

Fig. S18. ¹H NMR spectrum of 4"- C_{12} EGCG.

Fig. S19. ¹H NMR spectrum of 4"- C_{14} EGCG.

Fig. S20. ¹H NMR spectrum of 4"- C_{16} EGCG.

Fig. S21. ¹H NMR spectrum of 4"-C₁₈ EGCG.

5. ¹³C NMR spectra of 4"-alkyl EGCG derivatives

Fig. S22. ¹³C NMR spectrum of 4"-C₆EGCG.

Fig. S23. 13 C NMR spectrum of 4"-C₈ EGCG.

Fig. S24. ¹³C NMR spectrum of 4"-C₁₀ EGCG.

Fig. S25. ¹³C NMR spectrum of 4"-C₁₂ EGCG.

Fig. S26. 13 C NMR spectrum of 4"-C₁₄ EGCG.

Fig. S27. ¹³C NMR spectrum of 4"-C₁₆ EGCG.

Fig. S28. 13 C NMR spectrum of 4"-C₁₈ EGCG.

6. FTIR spectra of 4"-alkyl EGCG derivatives

FTIR spectra were recorded in Shimadzu Fourier transformed infra-red spectrophotometer (Model: IR Tracer 100).

Fig. S29. FTIR spectrum of 4"-C₆ EGCG.

Fig. S30. FTIR spectrum of 4"-C₈ EGCG.

Fig. S31. FTIR spectrum of 4"-C₁₀ EGCG.

Fig. S32. FTIR spectrum of 4"-C₁₂ EGCG.

Fig. S33. FTIR spectrum of 4"-C₁₄ EGCG.

Fig. S34. FTIR spectrum of 4"-C₁₆ EGCG.

Fig. S35. FTIR spectrum of 4"-C₁₈ EGCG.

7. Stability assay

Fig S36: UV-Visible absorption spectra of EGCG and 4"-C₁₄ EGCG in PBS buffer of pH 7.4.

8. MD simulation data

Fig. S37. MD simulation to analyse the interaction between EGFR and EGCG/4"-C14 EGCG (A) Time evolution of solvent accessible surface area (SASA) of EGFR kinase domain, (B) Time evolution of radius of gyration of EGFR kinase domain, (C) Time evolution of RMSD of respective ligands in EGFR complex, (D) Time evolution of RMSD of binding pocket residues (5 Å from the respective ligands) in EGFR complex.

Fig. S38. The center of mass distance and the number of hydrogen bonds calculated between ligand and protein. (A) Centre of mass (COM) distance between EGFR and its respective ligands, (B) Time evolution of hydrogen bond between receptor and ligands.

Fig. S39. Binding free energy (kcal/mol) for the receptor-ligand complexes.

Fig. S40. Ligand-protein 2D interaction profiles for (A) EGCG, and (B) 4"-C14 EGCG. Here green dashed line is used to denote hydrogen bonds and red semi-circle is used to show the hydrophobic contacts.

Residue	T _{vdw}	T _{ele}	T _{pol}	T _{np}	Tside	Tback	T _{total}		
EGCG									
D855	2.30	-26.00	18.25	-0.17	-5.53	-0.09	-5.62		
V726	-2.17	0.40	-0.31	-0.33	-2.09	-0.32	-2.41		
L718	-2.41	0.21	0.56	-0.33	-2.05	0.07	-1.98		
G796	-1.58	-1.28	1.41	-0.23	-0.59	-1.09	-1.68		
C797	-1.05	-1.16	0.99	-0.17	-0.75	-0.65	-1.40		
L844	-1.18	-0.11	0.21	-0.27	-1.29	-0.05	-1.34		
M793	-0.00	-1.96	0.72	-0.06	-0.38	-0.91	-1.29		
G719	-1.03	-0.90	0.94	-0.12	-0.31	-0.80	-1.11		
4''-C ₁₄ EGCG									
D800	1.59	-24.30	19.42	-0.31	-3.40	-0.21	-3.61		
L718	-2.57	-0.71	1.73	-0.45	-1.94	-0.05	-1.99		
R841	-2.90	-2.50	3.91	-0.48	-1.89	-0.09	-1.98		
C797	-2.01	-0.94	1.33	-0.21	-1.16	-0.66	-1.82		
V726	-1.62	-0.13	0.22	-0.25	-1.54	-0.24	-1.78		
F795	-2.29	-0.19	1.19	-0.36	-1.29	-0.35	-1.64		
S720	-1.74	-0.59	1.16	-0.19	-0.36	-0.99	-1.35		
G796	-1.08	-0.77	0.68	-0.17	-0.39	-0.94	-1.33		

Table S1. Decomposition of the binding free energy (kcal/mol) in residue level. Overall residue contribution (below -1 kcal/mol) is listed.

Acceptor	Donor	Distance (Å)	Angle (°)	Occupancy (%)				
EGCG								
O3	С797@N-Н	2.90	156.08	36.35				
M793@O	O5-H13	2.73	150.77	78.63				
D855@OD2	O9-H16	2.64	165.06	64.83				
D855@OD2	O11-H18	2.66	162.43	64.42				
D855@OD1	O11-H18	2.67	159.43	43.40				
D855@OD1	O9-H16	2.65	163.94	36.86				
D800@OD1	О3-Н9	2.66	162.34	30.29				
D800@OD2	О3-Н9	2.66	162.14	27.17				
4''-C ₁₄ EGCG								
D800@OD1	O8-H40	2.68	163.37	49.88				
D800@OD2	O8-H40	2.68	163.11	40.65				
D800@OD1	O7-H39	2.65	165.24	31.19				
D800@OD2	O7-H39	2.66	164.68	27.65				
D800@OD1	O9-H41	2.66	164.48	18.94				
D800@OD2	O9-H41	2.66	164.41	14.88				
D855@OD2	O11-H46	2.69	162.41	12.35				
M793@O	O2-H32	2.79	147.39	11.46				
D800@OD1	O3-H35	2.64	163.79	10.44				
D800@OD2	O3-H35	2.63	163.14	10.27				

 Table S2. Occupancy of receptor-ligand hydrogen bonds throughout simulation time-length.