
Supplementary Information

An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite

Figure S1: a) TG, b) XPS survey spectra of $g-C_3N_4$, CuS, 0.8CuS:0.2 $g-C_3N_4$; c) high resolution Cu2p spectrum of CuS and 0.8CuS:0.2 $g-C_3N_4$; Fitted high resolution d) S2p XPS of CuS; e) S2p XPS of 0.8CuS:0.2 $g-C_3N_4$; f) N1s XPS of CuS and 0.8CuS:0.2 $g-C_3N_4$; g) high resolution C1s of $g-C_3N_4$, CuS, 0.8CuS:0.2 $g-C_3N_4$.

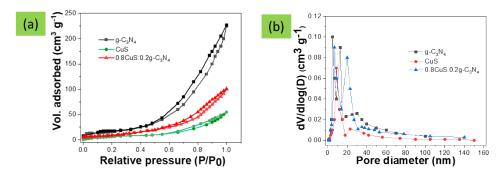
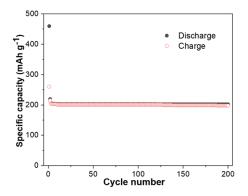
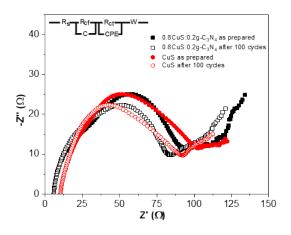


Figure S2: a) BET isotherm and b) BJH pore size distribution plot of $g-C_3N_4$, CuS, 0.8CuS:0.2 $g-C_3N_4$




Figure S3: Specific capacity of g-C₃N₄ anode at 0.1 A g⁻¹ current rate in LIB mode

Ref.	Synthesis method	Cycling performance					
		Initial	Reversible capacity (mAh	No. of			
		discharge/charge	g^{-1} / current density (A g^{-1})	cycles			
		$(mAh g^{-1})$					
1	Hydrothermal	525/311	50 / 0.05	10			
2	Co-precipitation	708/570	400 / 0.25	100			
3	Sol-gel	775/561	390 / 0.11	250			
4	Liquid phase	1380/850	259 / 0.1	50			
5	Microwave	505/450	379 / 0.2	100			
6	Hydrothermal	690/500	203 / 0.1	100			
This	Co-precipitation	930/693	304 / 0.1	200			
work							

Table S1: Comparison of CuS anode (in this work) with that reported in literature (for LIBs).

- 1. Tao, H.-C.; Yang, X.-L.; Zhang, L.-L.; Ni, S.-B. One-pot facile synthesis of CuS/graphene composite as anode materials for lithium ion batteries. *J. Phys. Chem. Solids* **2014**, *75*, 1205–1209.
- Feng, C.; Zhang, L.; Yang, M.; Song, X.; Zhao, H.; Jia, Z.; Sun, K.; Liu, G. One-pot synthesis of copper sulfide nanowires/reduced graphene oxide nanocomposites with excellent lithium-storage properties as anode materials for lithium-ion batteries. *ACS Appl. Mater. Interfaces* 2015, 7, 15726–15734.
- 3. Zhou, M.; Peng, N.; Liu, Z.; Xi, Y.; He, H.; Xi, Y.; Liu, Z.; Okada, S. Synthesis of sub-10 nm copper sulphide rods as high-performance anode for long-cycle life Li-ion batteries. *J. Power Sources* **2016**, *306*, 408-412.
- 4. Liu, H.; Zhang, L.; Ruan, H. Flower-like CuS/reduced graphene oxide composite as anode materials for lithium ion batteries. *Int. J. Electrochem. Sci.* **2018**, *13*, 4775 4781.
- Li, H.; Wang, Y.; Huang, J.; Zhang, Y.; Zhao, J. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. *Electrochim. Acta* 2017, 225, 443–451

 Zhang, J.; Zhao, Y.; Zhang, Y.; Li, J.; Babaa, M.-R.; Liu, N.; Bakenov, Z. Synthesis of microflower-like vacancy defective copper sulfide/reduced graphene oxide composites for highly efficient lithium-ion batteries. *Nanotechnology* 2020, *31*, 095405 (6pp)

Figure S4: Nyquist plot of as prepared and after 100 cycle run of CuS and 0.8CuS:0.2g-C₃N₄ electrode.

Table S2: Electrochemical	performance	of CuS	based	composite	LIB	anodes	reported in	1
literature.								

Ref.	Sample		Rate performance			
		Initial discharge/ charge (mAh g ⁻¹)	ICE (%)	Reversible capacity (mAh g ⁻¹) / current density (A g ⁻¹)	No. of cycles	Reversible capacity (mAh g^{-1}) / current density (A g^{-1})
1	CuS/graphene	827/484	58.5	296/0.05	25	/
2	CuS nanowires/rGO	908/630	69.4	620/0.28	100	300/2.8
3	CuS/PANI/ graphene	1655/1266	76.5	1265/0.1	250	374/5
4	CuS/rGO	1236/658	53.2	399/0.1	50	608/1.6
5	CuS/Cu _{1.8} S	1130/707	62.5	450/0.26	1000	195/0.8
6	CuS/graphene	627/525	83.7	348/2	1000	370/4
7	FeS ₂ /CuS	1394/999	71.7	843.3/1.0	600	530.4/10
8	CuS/rGO	882/670	75.9	585/0.11	100	150/1.6
This work	CuS/g-C ₃ N ₄	981/855	87.2	552 /1.0	1000	478.4/2

1. Tao, H.-C.; Yang, X.-L.; Zhang, L.-L.; Ni, S.-B. One-pot facile synthesis of CuS/graphene composite as anode materials for lithium ion batteries. *J. Phys. Chem. Solids* **2014**, *75*, 1205–1209.

- Feng, C.; Zhang, L.; Yang, M.; Song, X.; Zhao, H.; Jia, Z.; Sun, K.; Liu, G. One-pot synthesis of copper sulfide nanowires/reduced graphene oxide nanocomposites with excellent lithium-storage properties as anode materials for lithium-ion batteries. *ACS Appl. Mater. Interfaces* 2015, 7, 15726–15734.
- 3. Iqbal, S.; Bahadur, A.; Saeed, A.; Zhou, K.; Shoaib, M.; Waqas, M. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery. *J. Colloid Inter. Sci.* **2017**, *502*, 16–23.
- 4. Liu, H.; Zhang, L.; Ruan, H. Flower-like CuS/reduced Graphene Oxide composite as anode materials for lithium ion batteries. *Int. J. Electrochem. Sci.* **2018**, *13*, 4775 4781.
- Wang, L.-H.; Dai, Y.-K.; Qin, Y.-F.; Chen, J.; Zhou, E.-L.; Li, Q.; Wang, K. One-Pot synthesis and high electrochemical performance of CuS/Cu_{1.8}S nanocomposites as anodes for Lithium-ion batteries. *Materials* 2020, *13*, 3797.
- Li, H.; Wang, Y.; Huang, J.; Zhang, Y.; Zhao, J. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. *Electrochim. Acta* 2017, 225, 443–451.
- 7. Xu, X.; Li, L.; Chen, H.; Guo, X.; Zhang, Z.; Liu, J.; Mao, C.; Li, G. Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes. *Inorg. Chem. Front.* **2020**, *7*, 1900
- 8. Zhang, J.; Zhao, Y.; Zhang, Y.; Li, J.; Babaa, M.-R.; Liu, N.; Bakenov, Z. Synthesis of microflower-like vacancy defective copper sulfide/reduced graphene oxide composites for highly efficient lithium ion batteries. *Nanotechnology* **2020**, *31*, 095405 (6pp)

Ref.	Synthesis		Cycling perfor	mance	
	method				
		Initial	ICE (%)	Reversible	No.
		discharge/charge		capacity (mAh g ⁻¹)	of
		$(mAh g^{-1})$		/ current density (A	cycles
				g ⁻¹)	
1	Microwave	440/400	90.9	311.8 / 0.1	50
2	Solvothermal	700/550	78.6	300 / 0.2	100
3	Hydrothermal	/400		150 / 1.0	100
4	Dealloying	484/444	91.7	132.6 / 5.0	5000
5	Thermal	640/555	86.7	517 / 5.0	2000
6	Hydrothermal	456.9/418.6	91.6	418.6 / 0.1	100
	ion exchange				
This	Co-	738/635	86.0	212/1.0	800

Table S3: Comparison of CuS anode (in this work) with that reported in literature (for SIBs).

work	precipitation				
------	---------------	--	--	--	--

- 1. Li, J.; Yan, D.; Lu, T.; Qin, W.; Yao, Y.; Pan, L. Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. *ACS Appl. Mater. Interfaces* **2017**, *9*, 2309–2316.
- Kim, N. R.; Choi, J.; Yoon, H. J.; Lee, M. E.; Son, S. U.; Jin, H.-J.; Yun, Y. S. Conversion reaction of copper sulfide based nanohybrids for sodium-ion batteries. ACS Sustainable Chem. Eng. 2017, 5, 9802-9808.
- Xiao, Y.; Su, D.; Wang, X.; Wu, S.; Zhou, L.; Shi, Y.; Fang, S.; Cheng, H.-M.; Li, F. CuS microspheres with tunable interlayer space and micropore as a high-rate and longlife anode for sodium-ion batteries. *Adv. Energy Mater.* 2018, *8*, 1800930.
- 4. An, C.; Ni, Y.; Wang, Z.; Li, X.; Liu, X. Facile fabrication of CuS microflower as a highly durable sodium-ion battery anode. *Inorg. Chem. Front.* 2018, 5, 1045
- Kim, H.; Sadan, M. K.; Kim, C.; Choe, S.-H.; Cho, K.-K.; Kim, K.-W.; Ahn, J.-H.; Ahn, H.-J. Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries. *J. Mater. Chem. A* 2019, *7*, 16239–16248.
- 6. Wu, L.; Gao, J.; Qin, Z.; Sun, Y.; Tian, R.; Zhang, Q.; Gao, Y. Deactivateddesulfurizer-derived hollow copper sulfide as anode materials for advanced sodium ion batteries. *J. Power Sources* **2020**, *479*, 228518

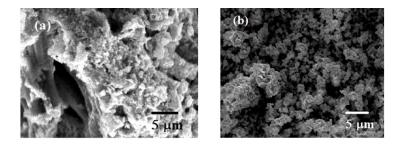
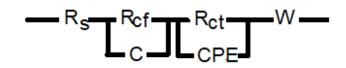



Figure S5: SEM of a) CuS electrode; b) 0.8CuS:0.2g-C $_3$ N $_4$ composite electrode after 800 cycle run in SIB mode.

Figure S6: Equivalent circuit diagram for Nyquist plot for as prepared and after run of 100 cycles of CuS and 0.8CuS:0.2g-C₃N₄ composite electrode in SIB mode.

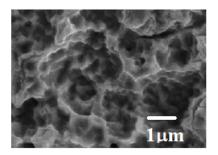
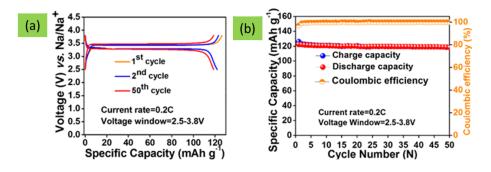



Figure S7: SEM of Cu current collector after 800 cycle run (anode material removed)

Figure S8: (a) GDC performance of NVP, (b) Cycling performance of NVP at 0.5C; potential range from 2.5 to 3.8 V vs. Na/Na⁺. NVP has been synthesized using the procedure as described in our earlier work [Carbon 143 (2019) 402-412]. The NVP electrodes were prepared by casting a slurry of NVP: Super C-65 (Timcal): Polyvinylidene fluoride (PVDF) in 8:1:1 weight ratio in N-Methyl-2- pyrrolidone (NMP) medium onto Al foil (16 mm). The electrodes were dried in vacuum at 100°C for about 8 h, and the half cell was assembled in an Ar-filled glove box, where both moisture and oxygen levels were kept at less than 1 ppm. 1 M NaClO₄ in a mixture of ethylene carbonate (EC),propylene carbonate (PC) (1:1 v/v) and fluoroethylene carbonate (FEC) (3 wt%) was used as the electrolyte, and a porous borosilicate glass fiber (GF/D, Whatman) was used as a separator.

Table S4: Electrochemical	performance	of CuS	based	composite	SIB	anodes	reported	in
literature.								

Ref.	Sample		Rate performance			
		Initial	ICE (%)	Reversible	No.	Reversible
		discharge/		capacity (mAh	of	capacity (mAh
		charge		g ⁻¹) / current	cycles	g ⁻¹) / current
		$(mAh g^{-1})$		density (A g ⁻¹)		density (A g ⁻¹)
1	CuS/rGO	780/550	70.5	392.9/0.1	50	359.5/1.0
		(NaClO ₄ /FEP, 0.005–3.0 V)				
2	CuS /a-	710/600	84.5	410/0.1	500	315/3.0
	SWCNT					
3	CuS/CTAB	747.5/ 684.9	91.6	312.5/10	1000	21.1/40
4	$Cu_{1.8}S-C/C$	380/350	92.1	372/0.05	110	286/2.8

	core/shell					
5	CuS _x @C	555.4/369.3	66.5	208/2	6300	133.2/10
This	CuS/g-C ₃ N ₄	755/695	92.1	424 /1.0	800	408/2.0
work	_					

- 1. Li, J.; Yan, D.; Lu, T.; Qin, W.; Yao, Y.; Pan, L. Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. *ACS Appl. Mater. Interfaces* **2017**, *9*, 2309–2316.
- Kim, N. R.; Choi, J.; Yoon, H. J.; Lee, M. E.; Son, S. U.; Jin, H.-J.; Yun, Y. S. Conversion reaction of copper sulfide based nanohybrids for sodium-ion batteries. ACS Sustainable Chem. Eng. 2017, 5, 9802-9808.
- Xiao, Y.; Su, D.; Wang, X.; Wu, S.; Zhou, L.; Shi, Y.; Fang, S.; Cheng, H.-M.; Li, F. CuS microspheres with tunable interlayer space and micropore as a high-rate and longlife anode for sodium-ion batteries. *Adv. Energy Mater.* 2018, *8*, 1800930.
- Kang, C.; Lee, Y.; Kim, I.; Hyun, S.; Lee, T. H.; Yun, S.; Yoon, W.-S.; Moon, Y.; Lee, J.; Kim, S.; Lee, H.-J. Highly efficient nanocarbon coating layer on the nanostructured copper sulfide-metal organic framework derived carbon for advanced sodium-ion battery anode, *Materials* 2019, *12(8)*, 1324.
- Shuang, W.; Huang, H.; Liu, M.; Bai, T.; Zhang, J.; Wang, D. Engineering of CuS_x@C derived from Cu-MOF as long-life anodes for sodium-ion batteries, *J. Sol. State Chem.* 2021, *302*, 122348.