Supporting Information

Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction[†]

Gasidit Panomsuwan^{a,b,c*}, Chadapat Hussakan^{a,b}, Napat Kaewtrakulchai^d, Ratchatee Techapiesancharoenkij^{a,b}, Ai Serizawa^e, Takahiro Ishizaki^e, and Apiluck Eiad-ua^{f,*}

^a Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

^b International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University, Bangkok 10900, Thailand

^c Special Research Unit for Biomass Conversion Technology for Energy and Environmental Materials, Kasetsart University, Bangkok 10900, Thailand

^d Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand

^e Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

^f College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

*Corresponding authors: gasidit.p@ku.ac.th (G. Panomsuwan); apiluck.ei@kmitl.ac.th (A. Eiad-ua)

Sample	Hydrochar yield (%)	HMNC yield (%)		
HMNC-0	74.12	31.24		
HMNC-0.5	71.72	27.31		
HMNC-1.0	68.26	26.57		
HMNC-1.5	65.73	23.92		

Table S1. Production yields of hydrochars and HMNCs derived from horse manure at different ammonia concentrations.

Fig. S1. SEM image of horse manure.

Fig. S2. TEM images and SAED pattern of HMNC-1.0.

Fig. S3. N₂ adsorption-desorption isotherm of horse manure.

Fig. S4. XRD pattern of horse manure corresponding to the crystalline cellulose I structure.

Fig. S5. SEM-EDS mapping analysis of horse manure.

Fig. S6. SEM-EDS mapping analysis of HMNC-1.0.

Fig. S7. CV curves measured in 0.1 M KOH solution with the saturation of N_2 (dashed line) and O_2 (solid line) at a scan rate of 50 mV s⁻¹: (a) HMNC-0, (b) HMNC-0.5, and (c) HMNC-1.5.

Fig. S8. LSV curves measured at various rotation speeds from 225 to 2500 rpm in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹: (a) HMNC-0, (b) HMNC-0.5, and (c) HMNC-1.5. Note: The current density was subtracted from the capacitive current measured in the N₂-saturated electrolyte.

Catalysts	Biomass	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Nitrogen content (atom%)	E _{onset} (V)	Electron transfer number (n)	Catalyst loading (mg cm ⁻²)	Reference
CD	Cow dung	128.5	0.091	-	-0.12	-	0.203	S1
CS	Chitin	100	0.06	3.69	-0.17	3.63 @-0.7 V	0.202	S2
NCA-K-900	Chicken feather rachis	183.2	0.238	2.3	-0.02	3.5 @–0.7 V 2.5 @–0.5 V	-	S3
ССВ	Chicken bone	69	-	-	-0.19	-	-	S4
CCB ₁	Chicken bone	294	-	-	-0.12	-	-	S4
CN _x -1000	Poutry feather	-	-	8.2	-0.195	-	0.353	S5
CN _x -950	Chicken feather rachis	4.77	-	2.3	-0.20	-	1.777	S6
CNA _x -900	Chicken feather rachis	301.2	-	4.3	-0.02	-	1.777	S6
N-GLC	Bagasse	530			0.07	~4 @–0.4 V	0.750	S7
CNPs-800	Allium sativum	234.1	0.14	-	-0.08	3.8 @-0.5 V	-	S8
N-QD	Unripe peach	-	-	8.77	-0.05	1.82 @-0.7 V	1.76	S9
N-HPC	Allium cepa	1607	-	-	-0.10	3.3 @-0.4 V	0.141	S10
BCM	Pomelo peel	62.8	0.03	0.51	-0.23	3.2 @-0.4 V	-	S11
a-BCM	Pomelo peel	314.3	0.22	2.41	-0.08	3.6 <i>@–</i> 0.4 V	-	S11
HMNC-1.0	Horse manure	55.2	0.055	1.32	-0.15	2.70 @-0.4V	0.398	This work

Table S2. Comparison ORR results of the biomass-derived nitrogen-doped carbon materials in 0.1 M KOH. The ORR onset potential (E_{onset}) and half-wave potential ($E_{1/2}$) in O₂-saturated 0.1 M KOH are given with respect to Ag/AgCl.

References

- [S1] Z. Zhang, H. Li, Y. Yang, J. Key, S. Ji, Y. Ma, H. Wang and R. Wang, RSC Adv. 2015, 5, 27112–27119.
- [S2] H. Yuan, L. Deng, X. Cai, S. Zhou, Y. Chen and Y. Yuan, *RSC Adv.* 2015, 5, 56121–56129.
- [S3] A. Tyagi, A. Yadav, P. Sinha, S. Singh, P. Paik and K. K. Kar, Appl. Surf. Sci. 2019, 495, 143603.
- [S4] H. Song, H. Li, H. Wang, J. Key, S. Ji, X. Mao, R. Wang, *Electrochim. Acta* 2014, 147, 520–526.
- [S5] R. Sharma and K. K. Kar, *Electrochim. Acta* 2016, **191**, 876–886.
- [S6] A. Tyagi, S. Banarjee, S. Singh and K. K. Kar, Int. J. Hydrogen Energy 2020, 45, 16930–16943.
- [S7] D. Bosubabu, V. Parthiban, A. K. Sahu and K. Ramesha, Bull. Mater. Sci. 2021, 44, 135.
- [S8] P. Kanagavalli, G. R. Pandey, V. S. Bhat, M. Veerapandian, G. Hedge, J. Nanostruct. Chem. 2021, 11, 343–352.
- [S9] R. A. Thomas, N. Jebakumar, I. Edison and Y. R. Lee, J. Colloid. Interf. Sci. 2016, 482, 8–18.
- [S10] J. Zhang, J. He, H. Zheng, R. Li and X. Gou, J. Mater. Sci. 2020, 55, 7464–7476.
- [S11] Y. Zhang, L. Deng, H. Hu, Y. Qiao, H. Yuan, D. Chen, M. Chang and H. Wei, *Sustain. Energy Fuels* 2020, **4**, 1642–1653.