Supporting Information

Synergistic Melamine intercalation and $Zn(NO_3)_2$ Activation to N-doped porous carbon supported Fe/Fe₃O₄ for efficient electrocatalytic oxygen reduction

Yaoyao Ni^a, Tingjuan Wang^a, Yan Zhou^a, Chao Wang^a, Yingwen Tang^b, Tao Li^c and Baoyou Geng^{*a,d}

^aCollege of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, No.189 Jiuhua South Road, Wuhu, 241002, China.

^bCollege of Physics and Information Engineering, Minnan Normal University

^cShanghai Institute of Technical Physics, Chinese Academy of Sciences

^dInstitute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei, 230031, China.

*Corresponding Author: bygeng@mail.ahnu.edu.cn

1. Additional Figures

Fig. S1 SEM and TEM images of unactivated $\alpha\text{-cellulose}$ powder.

Fig. S2 SEM and TEM images of Fe/Fe₃O₄@NC catalyst precursor powder.

Fig. S3 SEM and TEM images of materials prepared by urea as nitrogen source.

Fig. S4 SEM and TEM images of Fe/Fe₃O₄@NC (Zn-free) (a, b), NC (Fe-free) (c, d), Fe/Fe₃O₄@C (N-free) (e, f) and Fe₃O₄@NC (g, h).

Fig. S5 N₂ adsorptio-desorption isotherm and pore size distribution of Fe/Fe3O4@NC (Zn-free) (a), NC (Fe-free) (b), Fe/Fe₃O₄@C (N-free) (c) and Fe₃O₄@NC (d) catalysts.

Fig. S6 XPS spectrum of (a) C 1s, (b) O 1s in Fe/Fe₃O₄@C(N-free), XPS spectrum of (c) Fe 2p, (d) N 1s in Fe/Fe₃O₄@C (Zn-free).

Fig. S7 LSV curves at 1600 rpm and the corresponding bar graph of the $Fe/Fe_3O_4@NC$ electrocatalysts under different Fe content (a, b), pyrolysis temperature (c, d) and mass ratio of the precursor powder to melamine (e, f) in 0.1 M KOH solution at a scan rate of 5 mV s⁻¹.

Fig. S8 The corresponding bar graph of the $E_{1/2}$, Eoneset and J_L of Pt/C, Fe/Fe₃O₄@NC, Fe/Fe₃O₄@NC (Zn-free), Fe/Fe₃O₄@NC (N-free), NC (Fe-free) and Fe₃O₄@NC catalysts, respectively.

Fig. S9 SEM and TEM images of Fe/Fe $_3O_4@NC$ catalyst after 5,000 CV cycles of ADT test.

2. Additional Tables

Samples	BET surface area (m ² g ⁻¹)	V _{total} (cm³ g⁻¹)ª	V _{micro} (cm³ g⁻¹) ^b	V _{meso} (cm ³ g ⁻¹) ^c	Mesopore volume ratio (%)
Fe/Fe₃O₄@NC	546.70	1.4147	0.0359	1.3788	97.46
Fe/Fe₃O₄@NC (Zn-free)	449.87	1.0885	0.0339	1.0546	96.86
NC (Fe-free)	357.91	0.6211	0.0388	0.5823	93.75
Fe/Fe₃O₄@C (N- free)	302.69	0.4167	0.0752	0.3415	81.95
Fe ₃ O ₄ @NC	242.70	0.7276	0.0146	0.7130	97.99

Table S1. Pore structure properties from BET analysis of Fe/Fe₃O₄@NC, Fe/Fe₃O₄@NC (Zn-free).

NC (Fe-free), Fe/Fe₃O₄@C (N-free) and Fe₃O₄@NC catalysts.

Note:

^a The total pore volumes (V_{total}) were estimated at P/P₀ = 0.95.

^b Micropore volume (V_{micro}) were calculated using the t-plot method.

^c Mesopore volume (V_{meso}) were calculated by subtracting V_{micro} from $V_{total.}$

Catalysts	Electrolyte	Performance	Ref.
Fe/Fe ₃ O ₄ @NC	0.1 M KOH	E_{onset} =1.012 V, $E_{1/2}$ =0.90 V, J _L =5.876 mA cm ⁻²	This work
Fe ₃ O ₄ /Fe ₃ N/Fe-N-C@PC	0.1 M KOH	$E_{1/2}$ =0.90 V, J _L =5.542 mA cm ⁻²	1
Fe/Fe-N-C	0.1 M KOH	$E_{1/2}$ =0.881 V, J _L =5.714 mA cm ⁻²	2
Fe-N-C	50 mM PBS solution	$E_{1/2}$ =0.842 V, J _L =3.14 mA cm ⁻²	3
Fe-HPC	0.1 M KOH	E_{onset} =0.978 V, $E_{1/2}$ =0.85 V	4
Zn(NO ₃) ₂ -Fe/C/N@bio-C	0.1 M KOH	E _{onset} =0.95 V, E _{1/2} =0.86 V, J _L =6.21 mA cm ⁻²	5
ZnCl ₂ -Fe/C/N@bio-C	0.1 M KOH	E _{onset} =0.89 V, E _{1/2} = 0.77 V, J _L =6.20 mA cm ⁻²	5
Fe-N/C	0.1 M NaOH	$E_{1/2}$ = 0.892 V, J _L =4.26 mA cm ⁻²	6
Fe-N/C-SACs	0.1 M KOH	E _{onset} =0.89 V, E _{1/2} = 0.89 V, J _L =5.64 mA cm ⁻²	7
Fe-N-PPC	0.1 M KOH	E _{onset} =0.966 V, E _{1/2} = 0.891 V, J _L =5.077 mA cm ⁻²	8
SA-Fe/NHPC	0.1 M KOH	$E_{1/2}$ = 0.87 V, J _L =4.1 mA cm ⁻²	9
Zn/Fe _{SA} -PC/950/NH ₃	0.1 M KOH	E _{onset} =1.00 V, E _{1/2} = 0.88 V	10
Fe-ISA/NC	0.1 M KOH	E _{onset} =1.00 V, E _{1/2} = 0.89 V	11
Fe-N-C _{wood}	0.1 M KOH	E _{onset} =0.98 V, E _{1/2} = 0.90 V	12

Table S2. Comparison of the ORR performance for $Fe/Fe_3O_4@NC$ and other Fe-N-C-based catalysts.

References

- R. Hao, J. Chen, Z. Wang, J. Zhang, Q. Gan, Y. Wang, Y. Li, W. Luo, Z. Wang, H. Yuan, C. Yan, W. Zheng, W. Huang, P. Liu, J. Yan, K. Liu, C. Liu and Z. Lu, Iron polyphthalocyanine-derived ternary-balanced Fe₃O₄/Fe₃N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction, *Sci. China Mater*, 2021, 64, 2987-2996.
- X. Zheng, X. Cao, Z. Sun, K. Zeng, J. Yan, P. Strasser, X. Chen, S. Sun and R. Yang, Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries, *Appl. Catal, B.*, 2020, 272, 118967.
- 3. G. Yang, Z. Zhang, X. Kang, L. Li, Y. Li and Y. Sun, Fe-N-C Composite Catalyst Derived from Solid Digestate for the Oxygen Reduction Reaction in Microbial Fuel Cells, *ACS Appl. Energy Mater*, 2020, **3**, 11929-11938.
- 4. D. Li, Y. Qu, S. Li, M. Wei and Y. Liu, A novel honeycomb Fe-N-C composition derived from wheat flour as an efficiency catalyst for the oxygen reduction reaction, *J. Solid State Electrochem*, 2020, **24**, 1105-1112.
- Y. Li, H. Hu, J. Song, Y. Wu, X. Lv, Z. Xiao, F. Wang and Y. Chen, An Excellent Fe, N Co-Doped Porous Biomass Carbon Oxygen Reduction Reaction Electrocatalyst: Effect of Zinc-Based Activators on Catalytic Activity, *Energy Technol*, 2020, 8, 2194-4296.
- Q. Wu, D. Deng, Y. He, Z. Zhou, S. Sang and Z Zhou, Fe/N-doped mesoporous carbons derived from soybeans: A highly efficient and low-cost non-precious metal catalyst for ORR, *J. Cent. South Univ*, 2020, 27, 344-355.
- D. Wu, W. Liu, J. Hu, C. Zhu, H. Jing, J. Zhang, C. Hao and Y. Shi, Direct transformation of raw biomass into a Fe-Nx-C single-atom catalyst for efficient oxygen reduction reaction, *Mater. Chem. Front*, 2021, 5, 3093-3098.
- Y. Wang, M. Zhu, G. Wang, B. Dai, F. Yu, Z. Tian and X. Guo, Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe(2)N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon, *Nanomater. (Basel)*, 2017, 7, 2079-4991.
- 9. Z. Zhang, X. Gao, M. Dou, J. Ji and F. Wang, Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction, *Small*, 2017, **13**, 1604290.
- H. S. Kim, J. Lee, J.-H. Jang, H. Jin, V. K. Paidi, S.-H. Lee, K.-S. Lee, P. Kim and S. J. Yoo, Waste pig bloodderived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc-air batteries and AEMFCs, *Appl. Surf. Sci*, 2021, 563, 150208.
- 11. Wang X, Du J, Zhang Q, Gu L, Cao L, Liang H-P. In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass, Carbon., 2020, 157, 14-621.
- 12. D. Li, Z, Han, K. Leng, S. Ma, Y. Wang and J. Bai, Biomass wood-derived efficient Fe–N–C catalysts for oxygen reduction reaction, *J. Mater. NanoSci*, 2021, **56**, 12764-12774.