Electronic Supplementary Information

Mesoporous-rich Calcium and Potassium-Activated Carbons Prepared from Degreased Spent Coffee Grounds for Efficient Removal of MnO₄² in Aqueous Media

Suranjana Bose,*a Rebecca D. Kirk, a Harry Maslen, a Martha A. Pardo Islas, a Benedict Smith, a Thomas I. J. Dugmore,*a and Avtar S. Matharu*a

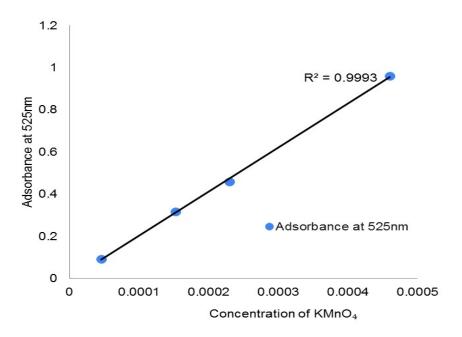


Figure S1. Calibration curve for the KMnO₄ solution

Table S1. Chemical composition of SCG in g per 100g dry material analysed¹

Chemical Components	Composition (g/100g dry material)
Cellulose	12.4
Hemicellulose	39.1
Lignin	23.9
Fat	2.29
Ashes	1.30
Protein	17.4
Nitrogen	2.79
Total dietary fibre	60.5

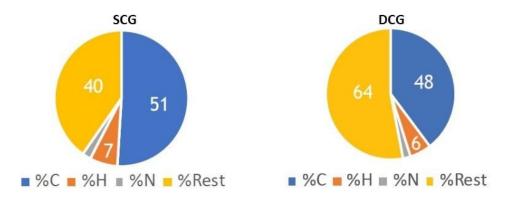


Figure S2. CHN analysis of SCG and DCG

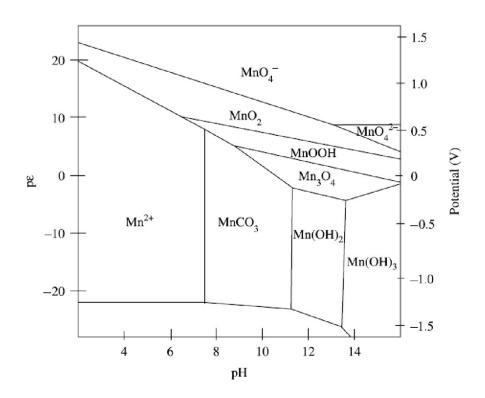
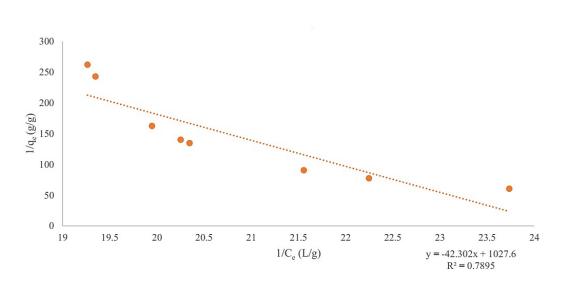



Figure S3. pε-pH diagram for aqueous Mn species²

Table S2 - THe pH of solutions with and without the AC and $KMnO_4$ added

	pH at 20°C
Water	7.02
1:1CaCl ₂ DCGAC + water	6.37
0.00046M KMnO ₄ solution	5.75
0.00046M KMnO ₄ solution + 1:1CaCl ₂ DCGAC	7.41

Figure S4. Langmuir modelling for $1:1 \text{ CaCl}_2\text{DGAC}$ in 0.00046M KMnO_4 solution at room temperature.

References

- 1. L. F. Ballesteros, J. A. Teixeira, S. I. Mussatto, Food Bioprocess Technol, 2014, 7, 3493.
- 2. W. Stumm and J. J. Morgan, *Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters*, 3rd Edition, John Wiley & Sons, Inc., New York, 1996, 462.