Supporting information

For

Effects of Ti-doping amount and annealing temperature on electrochromic performance of sol-gel derived WO₃

Hee sung Parkab, Sunghyeok Parkac, Seung Han Songab, Dao Thi Thuyac, Hung Van Tranac,

Seok In Lee^{ad}, Churl Hee Cho^{*b}, Chi-Hwan Han^{*a} and Sungjun Hong^{*a}

^a Photovoltaic Laboratory, New and Renewable Energy Research, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34125, Republic of Korea.

^b Department of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 35015, Republic of Korea

^c Renewable Energy Engineering, University of Science and Technology, 217, Gajeoungro, Yuseong-gu, Daejeon 34113, Republic of Korea.

^d Department of Chemistry, Korea University, Seoul 02741, Republic of Korea

*Corresponding author (C-H Cho., C.-H. Han., S-J Hong.)

Figure S1. SEM surface and cross-sectional images of $(1^{st} row) 4Ti-WO_3$, $(2^{nd} row) 12Ti-WO_3$, $(3^{rd} row) 16Ti-WO_3$ and $(4^{th} row) 20Ti-WO_3$ films annealed at 200, 250, 300, 350 and 400 °C from left to right, respectively.

Figure S2. XRD patterns of neat and respective TCA doped WO₃ films annealed at (a) 250 and (b) 350 °C. (The light blue and grey circles refer to monoclinic WO₃ and FTO substrate, respectively.)

Figure S3. Atomic ratios of P/W or Ti/W for xTi-WO₃-300 samples determined with EDS.

Figure S4. Cyclic voltammograms of various WO₃ films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C, respectively.

Figure S5. Calculations of diffusion coefficients of various WO₃ films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C, respectively.

Figure S6. Calculated diffusion coefficients of (a) 0Ti-WO₃, (b) 4Ti-WO₃, (c) 8Ti-WO₃, (d) 12Ti-WO₃, (e) 16Ti-WO₃, and (f) 20Ti-WO₃ at various annealing temperatures.

Figure S7. In-situ UV-Visible transmittance variations for (a) Ti-WO₃-200, (b) 4Ti-WO₃-200, (c) 8Ti-WO₃-200, (d) 12Ti-WO₃-200, (e) 16Ti-WO₃-200, and (f) 20Ti-WO₃-200, respectively.

Figure S8. In-situ UV-Visible transmittance variations for (a) Ti-WO₃-250, (b) 4Ti-WO₃-250, (c) 8Ti-WO₃-250, (d) 12Ti-WO₃-250, (e) 16Ti-WO₃-250, and (f) 20Ti-WO₃-250, respectively.

Figure S9. In-situ UV-Visible transmittance variations for (a) Ti-WO₃-350, (b) 4Ti-WO₃-350, (c) 8Ti-WO₃-350, (d) 12Ti-WO₃-350, (e) 16Ti-WO₃-350, and (f) 20Ti-WO₃-350, respectively.

Figure S10. In-situ UV-Visible transmittance variations for (a) Ti-WO₃-400, (b) 4Ti-WO₃-400, (c) 8Ti-WO₃-400, (d) 12Ti-WO₃-400, (e) 16Ti-WO₃-400, and (f) 20Ti-WO₃-400, respectively.

Figure S11. UV-Visible transmittance spectra of (a) 0Ti-WO₃, (b) 4Ti-WO₃, (c) 8Ti-WO₃, (d) 12Ti-WO₃, (e) 16Ti-WO₃, and (f) 20Ti-WO₃ at the pristine states under different annealing temperatures.

Figure S12. *In situ* optical response of the WO₃ films for 60 s per step measured at 550 nm annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C.

Figure S13. Optical density variation with respect to the charge density of WO_3 films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C.

Figure S14. In-situ transmittance variation at λ =550 nm during cyclic tests for 8Ti-, 16Ti- and 20Ti-WO₃-films from left to right annealed at 200 (1st row), 250 (2nd row), 350 (3rd row) and 400 °C (4th row).