Supporting Information

A mononuclear nine-coordinated Dy(III) complex exhibiting

field-induced single-ion magnetism behaviour

Biao Hu,^{a#} Jing Xi,^{a#} Peipei Cen,^b Yan Guo,^a Yi Ding,^{*,a} Yuanyuan Qin,^a Yi-Quan Zhang,^{*,c} and Xiangyu Liu^{*,a}

- ^{a.} State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. E-mail: xiangyuliu432@126.com; yiding@nxu.edu.cn
- ^{b.} College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
- ^{c.} Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China. E-mail: zhangyiquan@njnu.edu.cn
- # These authors contributed equally to this work.

*Corresponding author Prof. Xiangyu Liu E-mail: xiangyuliu432@126.com

Dr. Yi Ding E-mail: yiding@nxu.edu.cn

Prof. Yi-Quan Zhang zhangyiquan@njnu.edu.cn

Contents

Fig. S1 PXRD curve of complex 1

Fig. S2 *M* vs *H* curves for 1 at basic temperatures.

Fig. S3 Temperature dependence curves of χ_{M}' and χ_{M}'' susceptibilities without dc field

Fig. S4 Calculated complete structure of complex 1; H atoms are omitted.

Fig. S5 Packing diagram of complex 1 along b axis.

Fig. S6 Plot of τ vs. *H* for 1 under different dc fields.

Table. S1 Selected bond lengths (\AA) and bond angles $(^{\circ})$ for complex 1.

Table. S2 Dy(III) ions geometry analysis of 1 by SHAPE 2.1 software.

Table. S3 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of 1.

Table. S4 Structural and magnetic parameters for the reported nine-coordinated mononuclear Dy(III) SMMs.

Table. S5 In wave functions with definite projection of the total moment | JM > for the lowest three Kramers doublets (KDs) of the Dy(III) for complex 1.

Table. S6 ab initio computed crystal-field parameters for complex 1.

 Table. S7 Natural Bond Order (NBO) charges per atoms in the ground state of complex 1 calculated within CASSCF.

References

Fig. S1 PXRD curve of complex 1

Fig. S2 M vs H curves for 1 at basic temperatures.

Fig. S3 Temperature dependence curves of χ_{M}' and χ_{M}'' susceptibilities without dc field

Fig. S4 Calculated complete structure of complex 1; H atoms are omitted.

Fig. S5 Packing diagram of complex 1 along b axis.

Fig. S6 Plot of τ vs. *H* for **1** under different de fields.

Table. S1 Selected bond lengths (Å) and bond angles (°) for complex 1.

Complex 1					
Dy(1)-O(3)	2.350(4)	O(1)-Dy(1)-O(2)	150.74(15)		
Dy(1)-O(2)	2.395(4)	O(1)-Dy(1)-N(3)	64.23(15)		
Dy(1)-O(1)	2.390(4)	O(1)-Dy(1)-N(6)	81.14(15)		
Dy(1)-N(3)	2.441(5)	O(1)-Dy(1)-N(13)	79.49(16)		
Dy(1)-N(6)	2.640(5)	O(1)-Dy(1)-N(11)	72.45(15)		
Dy(1)-N(13)	2.445(5)	O(1)-Dy(1)-N(1)	126.25(16)		
Dy(1)-N(11)	2.619(5)	O(1)-Dy(1)-N(8)	133.29(16)		
Dy(1)-N(1)	2.607(5)	N(3)-Dy(1)-N(6)	74.16(17)		
Dy(1)-N(8)	2.476(5)	N(3)-Dy(1)-N(13)	123.79(18)		
O(3)-Dy(1)- O(2)	74.84(15)	N(3)-Dy(1)-N(11)	132.59(16)		
O(3)-Dy(1)- O(1)	91.05(16)	N(3)-Dy(1)-N(1)	62.74(17)		
O(3)-Dy(1)- N(3)	74.02(16)	N(3)-Dy(1)-N(8)	124.67(17)		
O(3)-Dy(1)- N(6)	147.47(16)	N(13)-Dy(1)-N(6)	142.31(16)		
O(3)-Dy(1)- N(13)	64.89(15)	N(13)-Dy(1)-N(11)	62.15(17)		
O(3)-Dy(1)- N(11)	126.45(15)	N(13)-Dy(1)-N(1)	139.84(17)		
O(3)-Dy(1)- N(1)	82.67(16)	N(13)-Dy(1)-N(8)	111.52(17)		
O(3)-Dy(1)- N(8)	135.33(16)	N(11)-Dy(1)-N(6)	81.28(16)		
O(2)-Dy(1)- N(3)	132.14(16)	N(1)-Dy(1)-N(6)	76.98(16)		
O(2)-Dy(1)- N(6)	124.07(16)	N(1)-Dy(1)-N(11)	147.73(17)		
O(2)-Dy(1)- N(13)	71.34(16)	N(8)-Dy(1)-N(6)	62.43(17)		
O(2)-Dy(1)- N(11)	95.21(16)	N(8)-Dy(1)-N(11)	73.92(16)		
O(2)-Dy(1)-N(1)	78.03(16)	N(8)-Dy(1)-N(1)	74.96(16)		
O(2)-Dy(1)-N(8)	63.07(16)	C(6)-N(3)- Dy(1)	126.4(4)		

Table. S2 Dy(III) ions geometry analysis of 1 by SHAPE 2.1 software.

Dy(III) ic	on geometry analysis of 1
HBPY-9	3 D7h Heptagonal bipyramid
JTC-9	4 C3v Johnson triangular cupola J3
JCCU-9	5 C4v Capped cube J8
CCU-9	6 C4v Spherical-relaxed capped cube
JCSAPR-9	7 C4v Capped square antiprism J10
CSAPR-9	8 C4v Spherical capped square antiprism
JTCTPR-9	9 D3h Tricapped trigonal prism J51
TCTPR-9	10 D3h Spherical tricapped trigonal prism
JTDIC-9	11 C3v Tridiminished icosahedron J63
HH-9	12 C2v Hula-hoop
MFF-9	13 Cs Muffin
Structure [ML9] HBPY-9 JTC-9 JCCU-9 CCU-9 JCSAPR-9 CSAPR-9 JTCTPR-9 TCTPR-9 JTDIC-9 HH-9 MFF-9
AROXIA	, 16.576, 14.279, 8.934, 7.431, 2.529, 1.330, 3.251, 1.811, 10.676, 11.056, 1.536

Configuration	ABOXIY, 1
Heptagonal bipyramid (D _{7h})	16.576
Johnson triangular cupola J3 (C_{3v})	14.279
Capped cube J8 (C_{4v})	8.934
Spherical-relaxed capped cube (C_{4v})	7.431
Capped square antiprism J10 (C_{4v})	2.529
Spherical capped square antiprism (C_{4v})	1.330
Tricapped trigonal prism J51 (D_{3h})	3.251
Spherical tricapped trigonal prism (D_{3h})	1.811
Tridiminished icosahedron J63 (C_{3v})	10.676
Hula-hoop (C_{2v})	11.056
Muffin ($C_{\rm s}$)	1.536

T(K)	Xτ	χs	α
2	0.035611	0.193631	0.000189
3	0.076706	0.013461	0.256001
4	0.016252	0.014854	0.165243
4.5	0.007006	0.018348	0.123448
5	0.003328	0.017357	0.109393
5.5	0.001636	0.017234	0.105143
6	0.000853	0.022761	0.098265
6.5	0.000463	0.016994	0.112061
7	0.00025	0.006492	0.123548
7.5	0.000134	1.02E-07	0.135951
8	7.05E-05	1.57E-07	0.17384
9	1.62E-05	2.32E-07	0.281026
10	4E-06	3.4E-07	0.350573

Table. S3 Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 2000 Oe dc field of **1**.

molecular formula	r _{shortestDy-O} /Å	r _{longestDy-O} /Å	$r_{longest}/Å$	configuration	r _{longest} /Å- r _{shortestDy-O} /Å	r _{longest} /Å- r _{longestDy-O} /Å	$U_{\rm eff}/k_{\rm B}/{ m K}$	dc field/Oe	$ au_0/{ m s}$
[Dy(H ₂ L)(NO ₃)(H ₂ O)(EtOH)](NO ₃) ₂ ·H ₂ O ^{S1a}	2.322	2.533	2.533	$C_{\rm s}$	0.211	0	20.63	1000	2.69 × 10 ⁻⁷
[Dy(Htpy)(NO ₃) ₂ (acac)] ^{S1b}	2.257	2.529	2.533	$C_{\rm s}$	0.276	0.004	22.7	0	6.98×10 ⁻⁷
$[Dy(H_3daps)(H_2O)_2(NO_3)] \cdot (NO_3) \cdot (MeOH)^{S1c}$	2.305	2.53	2.532	$C_{\rm s}$	0.227	0.002	23.8	2000	9.14×10 ⁻⁵
$[Dy(2,3'-pcad)(NO_3)-(H_2O)_4]\cdot NO_3\cdot H_2O^{S1d}$	2.307	2.564	2.579	$C_{4\mathrm{v}}$	0.272	0.015	24.95	1200	$5.5 imes 10^{-8}$
[Dy(L)(NO ₃)(EtOH) ₂] _(SR) ^{S1a}	2.291	2.502	2.525	$C_{\rm s}$	0.234	0.023	28.49	1000	6.22 × 10 ⁻⁷
$[Dy(H_4daps)(H_2O)_3(NO_3)] \cdot (NO_3)_2 \cdot (H_2O)^{S1c}$	2.351	2.455	2.548	$C_{\rm s}$	0.197	0.093	32.7	2000	1.82×10-6
[Dy(quinbeyz)(NO ₃) ₂ (DMF)] ^{S1e}	2.296	2.491	2.537	$C_{4\mathrm{v}}$	0.241	0.046	34.8	1000	1.4×10 ⁻⁶
[Dy(2,3'- Hpcad) ₂ (H ₂ O) ₃]·3Cl·5H ₂ O ^{S1d}	2.384	2.431	2.59	$C_{4\mathrm{v}}$	0.206	0.159	39.2	0	3.4×10^{-6}
[Dy(2,3'-pcad)(NO ₃) ₂ (CH ₃ OH) ₂] ^{S1d}	2.258	2.54	2.569	D_{3h}	0.311	0.029	56.11	1200	$2.9 imes 10^{-6}$
[Dy(L)(NO ₃)(EtOH) ₁] _(FR) ^{S1a}	2.291	2.502	2.525	$C_{\rm s}$	0.234	0.023	57.52	1000	1.53 × 10 ⁻¹²
$[(C_{12}H_{10}N_5O)Dy(NO_3)_2(H_2O)_2] \cdot C_2H_5OH^{S1f}$	2.319	2.538	2.607	$C_{ m 4v}$, $D_{ m 3h}$	0.288	0.069	58.99	500	1.16×10-9
[Dy(HL ⁴) ₃ (NO ₃) ₃] ^{S1g}	2.291	2.513	2.513	$C_{\rm s}$	0.222	0	62	2000	6.11×10 ⁻¹⁰
$[Dy(HL^3)_3(NO_3)_3] \cdot CH_3 CN^{S1g}$	2.296	2.495	2.495	$C_{4\mathrm{v}}$	0.199	0	66	2000	1.29×10 ⁻¹⁰
[Dy(HL ¹) ₂ (NO ₃) ₃ (CH ₃ OH)] ^{S1g}	2.28	2.504	2.504	$D_{3\mathrm{h}}$	0.224	0	67	1000	9.72×10 ⁻⁸
Dy (Hcpt) ₃]·2H ₂ O ^{this work}	2.35	2.395	2.64	$C_{4\mathrm{v}}$	0.29	0.245	97.90	2000	3.57×10 ⁻¹⁰
Dy(bpad) ₃ .CH ₃ OH· H ₂ O ^{S1h}	2.352	2.366	2.639	$C_{4\mathrm{v}}$	0.287	0.273	106.93	1200	2.28×10^{-8}
[Dy (HL ²) ₂ (NO ₃) ₃ (H ₂ O)] ^{S1g}	2.308	2.498	2.498	$C_{\rm s}$	0.19	0	116	2000	8.72×10 ⁻¹¹
$[(C_{12}H_{10}N_5O)Dy(NO_3)_2(C_2H_5OH)_2]\cdot H_2O^{S1f}$	2.275	2.538	2.888	$C_{4\mathrm{v}}$	0.613	0.35	203.11	0	1.77×10 ⁻⁹
${[Dy(CH_3OH)(NO_3)_2(tpy)] \cdot CH_3OH}n^{S1b}$	2.149	2.549	2.549	$C_{\rm s}$	0.4	0	354.36	0	1.4×10 ⁻¹⁰

Table. S4 Structural and magnetic parameters for the reported nine-coordinated mononuclear Dy(III) SMMs.^{S1}

 $H_2L=2,6$ -diylbis(ethan-1-yl-1- ylidene)di(isonicotinohydrazide); Hacac = acetylacetone; Htpy = 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine; H_4 daps = 2,6-bis(2-salicyloylhydrazonoethyl)pyridine; H_4 d aps = 2,6-bis(1-salicyloylhydrazonoethyl)pyridine; 2,3'-Hpcad = N³ -(2-pyridoyl)-3- pyridinecarbo xamidrazone; quinbeyz = 8-hy-droxyquinoline-2-carboxyaldehyde-(benzoyl)hydrazine; HL = N³-(2 -pyridoyl)-4- pyridinecarboxamidrazone; HL⁴=1-[N-(4- iodophenyl)]aminomethylidene-2(1H)naphth alenone; HL³=1-[N-(4- methoxy)]aminomethylidene-2(1H)naphthalenone; HL¹=1-[N-(4- cholrophen yl)]aminomethylidene-2(1H)naphthalenone; HL²=1-[N-(4- nitrophenyl)]aminomethylidene-2(1H)nap hthalenone; Hbpad = N³ -benzoylpyridine-2-carboxamidrazone; Hcpt=2-cyano-N'-(1-(pyridin-2-yl)a mido) acetyl.

Table. S5 In wave functions with definite projection of the total moment | JM > for the lowest three Kramersdoublets (KDs) of the Dy(III) for complex 1.

	E/cm^{-1}	wave functions
	0.0	94% ±15/2>+0.4% ±9/2>
1	140.57	4% ±15/2>+20% ±13/2>+38% ±9/2>+30% ±7/2>
	181.07	2% ±15/2>+65% ±13/2>+26% ±11/2>+5% ±7/2>

k	q	B_{kq}
2	-2	0.34920108741873E+00
2	-1	0.10623695699148E+01
2	0	-0.16683513847537E+01
2	1	0.22724392178449E+00
2	2	0.15351060150934E+01
4	-4	-0.10070380334743E-01
4	-3	-0.14349137952895E-01
4	-2	0.49177326240960E-02
4	-1	-0.12457495719780E-01
4	0	-0.22714814504834E-02
4	1	0.17428047599169E-01
4	2	-0.12194137289474E-02
4	3	0.24460325516696E-01
4	4	0.25313908551810E-02
6	-6	-0.13332171208156E-03
6	-5	0.79185311618547E-04
6	-4	0.13304569021568E-03
6	-3	0.46855867085394E-03
6	-2	-0.38518926294551E-04
6	-1	0.88438758948006E-04
6	0	-0.32165464267250E-04
6	1	-0.26286752285944E-03
6	2	-0.33416013164089E-04
6	3	0.54028643402664E-04
6	4	0.26863954347958E-04
6	5	0.36814372298679E-03
6	6	0.24222901262908E-03

 Table. S6 ab initio computed crystal-field parameters for complex 1.

	1
Dy	2.4555
01	-0.8160
02	-0.7834
03	-0.8132
N1	-0.3561
N2	-0.3470
N3	-0.3289
N4	-0.3351
N5	-0.3325
N6	-0.3875

 Table. S7 Natural Bond Order (NBO) charges per atoms in the ground state of complex 1 calculated within CASSCF.

References

S1. (a) J. Wang, H. Wang, Y. Ma, J. Tang, L. Li, Q. Wang, B. Zhao, P. Cheng, and J. Ma, *Cryst. Growth Des.*, 2019, **19**, 3365-3371; (b) Y. Li, Y. You, P. Zhao, *Inorg. Chem.*, 2021, **60**, 11419-11428. (c) A. K. Mondal, S. Goswami, and S. Konar, *Dalton Trans.*, 2015, **44**, 5086-5094; (d) L. Sun, S. Zhang, C. Qiao, S. Chen, B. Yin, W. Wang, Q. Wei, G. Xie, and S. Gao, *Inorg. Chem.*, 2016, **55**, 10587-10596; (e) C.-L. Ji, Y.-X. Jiang, J.-C. Zhang, Z.-Y. Qi, J.-J. Kong, and X.-C. *Inorg. Chem.*, 2018, **644**, 1635-1640; (f) L. Sun, S. Zhang, Z. Jiang, Q. Yang, S. Chen, Y. Zhang, W. Wang, Q. Wei, and G. Xie, *Dalton Trans.*, 2017, **46**, 11159-11165; (g) H. Yang, S.-S. Liu, Y.-S. Meng, Y.-Q. Zhang, L. Pu, X. Wang, and S. Lin, *Dalton Trans.*, 2022, **51**, 1415; (h) X. Liu, X. Ma, W. Yuan, P. Cen, Y.-Q. Zhang, J. Ferrando-Soria, G. Xie, S. Chen, and E. Pardo, *Inorg. Chem.*, 2018, **57**, 14843-14851;