Supplementary Material

Study on adsorption of phosphate from aqueous solution by zirconium modified coal gasification coarse slag

Baoguo Yang ^{a,b}, Fenglan Han ^{*}c, Zuoming Xie ^a, Zhe Yang ^a, Fengcheng Jiang ^d, Sen Yang ^a, Yilian Li ^{*}a

^a Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science,

School of Environmental Studies, China University of Geosciences, NO. 68 Jincheng

Street, East Lake High-Tech Development Zone, Wuhan, 430078, P. R. China

^bNingxia Geophysical and Geochemical Survey Institute, Yinchuan 750001, China

^c School of Materials Science and Engineering, North Minzu University, Yinchuan

750021, China

^d Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo, Henan 454003, China

*Corresponding author

E-mail address: 625477897@qq.com (F. Han), yl.li@cug.edu.cn_(Y. Li)

Text S-1: The removal efficiency (%R) and sorption capacity Qt

The removal efficiency (%R) and sorption capacity Qt (mg/g) were computed according to the following equations: 1

$$\%R = (C_o - C_t) \times 100 / C_o \tag{1}$$

$$Q_t = (C_o - C_t) \times V/m \tag{2}$$

where C_o , C_t are respective phosphate concentrations (mg/L) of the initial and different time, m, V are the mass of sorbent (g) and the solution volume (ml), respectively.

Text S-2: Langmuir and Freundlich isotherm equations

The Langmuir and Freundlich equations can be expressed as follows: ²

Langmuir isotherm equation:

$$q_e = K_L q_m \mathcal{C}_e / (1 + K_L \mathcal{C}_e) \tag{3}$$

Freundlich isotherm equation:

$$q_e = K_F C_e^{-1/n} \tag{4}$$

Where C_e (mg/L) represents the phosphate concentration at the equilibrium stage of sorption, q_e and q_m represents the sorption amounts of phosphate by CGCS-Zr4 at equilibrium and the theoretical maximum monolayer sorption capacity, respectively, K_L refers to the Langmuir constant, and measures the sorbent affinity to the solute. K_F is the adsorption coefficient. n refers characteristic surface heterogeneity.

Fig. S-1. Adsorption isotherms of phosphate by CGCS-Zr4 at 25 and 50 °C. Adsorption conditions: reaction time,

24 h; adsorbent dose, 1 g/L; and shake speed, 160 rpm.

Table S-1

Adsorption isotherm parameters. Experimental conditions: pH value = 6, adsorbent dosage = 1 g/L, reaction time =

T (°C)	Langmuir			Freundlich			
	$q_m(mg/g)$	k _L (L/mg)	R ²	1/n	K_{F} (mg/g)	R ²	
25	19.814	2.582	0.934	0.189	11.437	0.942	
50	22.372	1.716	0.941	0.217	11.781	0.931	

Table S-2

Comparison of the adsorption capacity of CGCS-Zr4 and adsorbents given in literatures for phosphate.

Adsorbent	Initial concentration (mg P/L)	рН	Temperatur e (°C)	Sorption capacity (mg/g)	Ref.
			(\mathbf{C})		

Zr/Al-Mt	20–50	5.0	25	17.2	3
BFSs	50-500	7.0	20	18.9	4
La-Ves	1.02-5.03	7.1	25	6.7	5
Magnetic Fe–Zr binary oxide	0-100	4.0	25	13.65	6
Iron oxide tailings	5-150	6.6-6.8	20-21	8.2	7
Zr-CNTs	5-50	3	30	10.9	8
Lepidocrocite	2–100	7.2	25	3.2	9
CGCS-Zr4	5-50	6	30	19.81	This study

Text S-3: kinetic model

The equations of the four kinetic models can be displayed below: ^{10, 11}

The pseudo first order equation:

$$q_{t=}q_{e}(1-e^{-k_{1}t})$$
(5)

The pseudo second order equation:

$$q_t = k_2 q_e^2 t / (1 + k_2 q_e t) \tag{6}$$

The intraparticle diffusion model:

$$q_t = K_{id} t^{1/2} + C (7)$$

Elovich equation:

$$q_t = \frac{1}{\beta} \ln \left(1 + \alpha \beta t \right) \tag{8}$$

where q_e and q_t represent the respective adsorbed amount of phosphate at equilibrium and any time t (min). k_1 , k_2 and k_{id} are the rate constants of the Eq. (5), Eq. (6) and Eq. (7), respectively. C represents the thickness of the boundary layer. α is the initial adsorption rate; β is the desorption constant.

Fig. S-2. Adsorption kinetics of phosphate on CGCS-Zr4: (a) pseudo-first-order, pseudo-second-order and elovich models; (b) intraparticle diffusion model. Adsorption conditions: temperature, 25 °C; shake speed: 160 rpm, adsorbent dose: 1 g/L, and initial phosphate concentration: 10 mg/L.

Table S-3

Adsorption kinetic parameters of CGCS-Zr4 to phosphate.

Kinetic models and Experimental results	Plot parameters	Values
Experimental adsorption capacity	$q_{e,exp}(mg/g)$	9.14
Pseudo-first-order	q _{e,cal} (mg/g)	7.84
	$k_1(\min^{-1})$	0.055
	R ²	0.718
Pseudo-second-order	q _{e,cal} (mg/g)	8.233
	K ₂ (g/(mg min))	0.010
	R ²	0.861
Elovich	α (mg/ (g min))	10.181
	β (g/mg)	1.100
	R ²	0.990
Intraparticle diffusion	K_{id1} (mg/g min ^{1/2})	0.646
	С	1.899
	R ²	0.965
	$K_{id2} (mg/g min^{1/2})$	0.158

С	4.758
R ²	0.982
$K_{id3} (mg/g min^{1/2})$	0.046
С	7.039

Table S-4

Main chemical constituents of ditch water before and after adsorption.

Ion	TOC	Ca ²⁺	K ⁺	Mg ²⁺	Na ⁺	PO4 ³⁻	F-	Cl	NO ₃ -	SO4 ²⁻	
Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	рн
Content before	14.02	666	7 75	120	522	0.062	1.06	509	2.24	700	7.09
adsorption	14.05	00.0	1.15	120	333	0.005	1.00	508	5.24	709	7.98
Content after	11.41	59.4	7.50	111	405	0.000	0.026	510	2.16	715	0 10
adsorption		38.4	7.50	111	495	0.000	0.036	512	5.10	/15	8.19

Fig. S-3. SEM images of (a) CGCS, (b) CGCS-Zr, (c) CGCS-Zr after phosphate adsorption, (d) EDS spectrum of

CGCS, (e) CGCS-Zr, and (f) P-loaded CGCS-Zr.

Fig. S-4. XRD spectrum of samples.

Fig. S-5. the changes of pH_{PZC} of CGCS-Zr4 and CGCS-Zr4 after phosphate adsorption.

Fig. S-6. XPS analysis of CGCS-Zr4 before and after phosphate adsorption: (a) wide-scan spectra; (b) P 2p; (c) Fe 2 p.

References

- Y. Abdellaoui, H. Abou Oualid, A. Hsini, B. El Ibrahimi, M. Laabd, M. El Ouardi, G. Giácoman-Vallejos and P. Gamero-Melo, *Chemical engineering journal (Lausanne, Switzerland: 1996)*, 2021, 404, 126600.
- 2 M.A. Usman and A.Y. Khan, J. Hazard. Mater., 2022, 428, 128238.
- 3 W. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu and Y. Zhang, *Appl. Clay Sci.*, 2015, **104**, 252-260.
- 4 B. Kostura, H. Kulveitová and J. Leško, Water Res., 2005, 39, 1795-1802.
- 5 H. Li, J. Ru, W. Yin, X. Liu, J. Wang and W. Zhang, J. Hazard. Mater., 2009, 168, 326-330.
- 6 F. Long, J. Gong, G. Zeng, L. Chen, X. Wang, J. Deng, Q. Niu, H. Zhang and X. Zhang, *Chem. Eng. J.*, 2011, **171**, 448-455.
- 7 L. Zeng, X. Li and J. Liu, Water Res., 2004, 38, 1318-1326.
- 8 Y. Gu, M. Yang, W. Wang and R. Han, *Journal of Chemical & Engineering Data*, 2019, **64**, 2849-2858.
- 9 N. Sleiman, V. Deluchat, M. Wazne, A. Courtin, Z. Saad, V. Kazpard and M. Baudu, *RSC Adv.*, 2016, 6, 1627-1636.
- 10 M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen and S. Sadaf, *Journal of Environmental Chemical Engineering*, 2017, **5**, 400-411.
- 11 A.A. Alqadami, M. Naushad, Z.A. ALOthman, M. Alsuhybani and M. Algamdi, J. Hazard. Mater.,

2020, 389, 121896.