Electronic Supplementary Information (ESI)

Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules containing a PEGylated nanocore for fluorescence detection of the target protein

Xingjia Feng, Siyu Jin, Dongru Li, Guoqi Fu*

Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

* Corresponding author.

E-mail address: gqfu@nankai.edu.cn (G. Fu)

Tel: 86 22 23501443

Scheme S1. Schematic illustration of the procedure for the synthesis and subsequent surface functionalization of carbon dots.

Fig. S1. TEM images of (a) the original SiO₂ NPs, (b) MIP JNPs obtained by surface-initiated ATRP over the SiO₂-NH₂// epitope/iB-Br JNPs, and (c) OM-MIP NCs obtained after partial

etching the SiO_2 nanocore inside the MIP JNPs. The insets (top) show the high-resolution images with a bar of 100 nm. The insets (bottom) indicate the counted size distribution.

Fig. S2. FT-IR spectra of (a) SiO₂ NPs, (b) SiO₂-NH₂ NPs, (c) SiO₂-NH₂//iB-Br/Ac-Br JNPs and (d) SiO₂-PEG NPs. For all the particles, the strong and broad peak around 1097 cm⁻¹ indicates the Si-O-Si asymmetric stretching, and the bands observed at around 799 cm⁻¹ shows the Si-O vibration. For the SiO₂-NH₂ NPs, the peak at 1454 cm⁻¹ corresponds to the N-H bending vibration, and the peaks at 2988 cm⁻¹ and 2901 cm⁻¹ correspond to the stretching vibration of C-H bonds of the methyl or methylene groups of APTES, confirming the surface modification of SiO₂ NPs by APTES. For the SiO₂-NH₂//iB-Br/Ac-Br JNPs, the appearance of characteristic bands at 1638 cm⁻¹ represents the bromoisobutyrate residue. With respect to SiO₂-PEG NPs, the two peaks at 2932 cm⁻¹ and 1638 cm⁻¹ corresponding to the vibration of -CH₂- and C=O bonds suggest the successful modification with silanized m-PEG.

Fig. S3. Transmittance of OM-MIP NCs in the PB buffer with increasing temperatures. The The volume phase transition temperature (VPTT) was determined to be about 37 °C.

Fig. S4. (a) TEM image of the GMA-CDs. (b) FL excitation and emission spectra of the GMA-CDs dispersed in the PB buffer. The insets show the photographs of the GMA-CDs solution under sunlight (left) and a 365 nm UV lamp (right), respectively.

Fig. S5. (a) The FL emission spectra of the OM-MIP NCs dispersed in PB buffer under varied λ_{ex} . (b) The FL emission intensity change of the OM-MIP and OM-NIP NCs in PB buffer during continuous FL measurements.

Fig. S6. The effect of (a) mass ratio of GMA-CDs relative to support JNPs and (b) molar crosslinking in the polymerization recipe on the FL response of the resultant OM-MIP and OM-NIP NCs.

Fig. S7. The effect of (a) temperature and (b) pH on the FL response of the OM-MIP and OM-NIP NCs.

Fig. S8. FL response kinetics of the closed MIP and NIP NCs.

Fig. S9. SEM images of (a) the original SiO_2 NPs and (b) the SiO_2 NPs after partially etched with 80 mM of NH_4HF_2 .

Fig. S10. TGA curves of (a) the original SiO₂ NPs and (b) PEGylated SiO₂ NPs. The amount of PEG chains grafted to the PEGylated SiO₂ was estimated to be \sim 42 mg/g.

Table S1. Comparison of the FL detection performance of the reported molecular imprintingbased FL sensors for BSA or HSA detection.

FL substance	Template	Linear	LOD (nM)	$\mathrm{IF}_{\mathrm{SV}}$	Ref.
		(μM)	(IIIVI)		
ZnO QDs	BSA	3.0-30	-	2.4	[1]
MWCNT QDs	BSA	0.5-3.5	80.0	4.2	[2]
CdTe/CdS	BSA	2-64	500	1.9	[3]
QDs					
Dansyl	BSA	0.2-2.65	560	21	[4]
CdTe QDs	C-terminus	0.25-5	44.3	2.6	[5]
	nonapeptides of HSA				
CdTe QDs	C-terminus	0.5-10	110	4.8	[6]
	nonapeptides of BSA				
CDs	C-terminus	0.2-6	43.8	7.8	[7]
	nonapeptides of BSA				
CDs	C-terminus	0.25-6	38.1	6.1	This work
	nonapeptides of BSA				

Fig. S11. FL emission spectra of (a) non-PEGylated OM-MIP and (b) non-PEGylated OM-NIP NCs in the presence of BSA (0–8 μ M), respectively. The insets show the corresponding Stern–Volmer plots.

Table S2. The spiked recoveries and relative standard deviations (RSDs, %; n=3) for the detection of BSA in the 1000-fold diluted bovine serum using the OM-MIP NCs.

spiked (µM)	found (µM)	recovery \pm RSDs (%) ^a
0	0.45 ± 0.02	-
0.5	0.97 ± 0.02	104.0 ± 4.6
1.0	1.43 ± 0.03	98.0 ± 2.6
2.0	2.47 ± 0.03	101.0 ± 1.7
4.0	4.44 ± 0.05	99.8 ± 1.2

^{*a*} The recoveries were calculated based on the BSA concentration found in the spiked samples

after subtraction of that found in the non-spiked sample.

Fig. S12. The reusability of the OM-MIP NCs and OM-NIP NCs with 4 use/regeneration cycles. The used NCs were regenerated by washing with 1% SDS/1% acetic acid solution for removal of the BSA bound, followed by washing with NaCl solution (1 M) and water.

References

[1] X.J. Li, J.J. Zhou, L. Tian, W. Li, B.L. Zhang, H.P. Zhang, Q.Y. Zhang, Bovine serum albumin surface imprinted polymer fabricated by surface grafting copolymerization on zinc oxide rods and its application for protein recognition, J. Sep. Sci. 38 (2015) 3477–3486.
[2] Z.Q. Ding, S.A. Bligh, L. Tao, J. Quan, H.L. Nie, L.M. Zhu, X. Gong, Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein, Mater. Sci. Eng., C 48 (2015) 469–479.

[3] L.S. Wang, L.S. Zhao, A novel nanocomposite optosensing sensor based on porous molecularly imprinted polymer and dual emission quantum dots for visual and high selective detection of bovine serum albumin, Colloids Surf., A 632 (2022) 127843.

[4] E. Battista, P.L. Scognamiglio, N. Di Luise, U. Raucci, G. Donati, N. Rega, P.A. Netti, F. Causa, Turn-on fluorescence detection of protein by molecularly imprinted hydrogels based on supramolecular assembly of peptide multi-functional blocks, J. Mater. Chem. B 6 (2018)

1207-1215.

[5] Y.Z. Wang, D.Y. Li, X.W. He, W.Y. Li, Y.K. Zhang, Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin, Microchim. Acta 182 (2015) 1465–1472.

[6] Y.Q. Yang, X.W. He, Y.Z. Wang, W.Y. Li, Y.K. Zhang, Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin, Biosens. Bioelectron 54 (2014) 266–272.

[7] S.T. Zhang, Z.Q. Liu, S.Y. Jin, Y.F. Bai, X.J. Feng, G.Q. Fu, A method for synthesis of oriented epitope-imprinted open-mouthed polymer nanocapsules and their use for fluorescent sensing of target protein, Talanta 234 (2021) 122690.