Electronic Supplementary Information

Halogen-free layered double hydroxides-cyclotriphosphazene carboxylates flame retardants: Effects of cyclotriphosphazene di, tetra and hexa carboxylates intercalation on layered double hydroxides against the combustible epoxy resin coated on wood substrate

Velusamy Jeevananthan, Swaminathan Shanmugan*

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.

Corresponding author: Swaminathan Shanmugan [\(shanmugs2@srmist.edu.in](mailto:shanmugs2@srmist.edu.in), [shanmugan0408@gmail.com\)](mailto:shanmugan0408@gmail.com)

Contents

Synthesis of Cyclotriphosphazene dicarboxylic acid $\left[dispi\Phi_3P_3(O_2C_{12}H_8)_2\right]$ (OC6H4COOH)2] (**L1**) Synthesis of Cyclotriphosphazene Tetracarboxylic acid [*spiro-N*₃P₃(O₂C₁₂H₈) (OC6H4COOH)⁴](**L2**) **Fig. S1** ¹H-NMR spectrum of compound **2**. **Fig. S2** ¹³C-NMR spectrum of compound **2**. **Fig. S3** ³¹P-NMR spectrum of compound **2**. **Fig. S4** ESI-MS of compound **2**.

Fig. S5¹H-NMR spectrum of compound L_1 .

Fig. S6 ¹³C-NMR spectrum of compound **L1**.

Fig. S7 ³¹P-NMR spectrum of compound **L1**.

Fig. S8 ESI-MS of compound **L1**.

Fig. S9 ¹H-NMR spectrum of compound **4**.

Fig. S10 ¹³C-NMR spectrum of compound **4**.

Fig. S11 ³¹P-NMR spectrum of compound **4**.

Fig. S12 ESI-MS of compound **4**.

Fig. S13¹H-NMR spectrum of compound L_2 .

Fig. S14 ¹³C-NMR spectrum of compound **L2**.

Fig. S15³¹P-NMR spectrum of compound L_2 .

Fig. S16 ESI-MS of compound **L2**.

Fig. S17 FT-IR spectra of compounds 2 , L_1 , 4 and L_2 .

Fig. S18 N_2 adsorption and desorption isotherm for Mg-Al-NO₃-LDH

Fig. S19 Elemental mapping analysis of C, N, O, Mg, Al, P of a) LDH-PN-TC, b) LDH-PN-

HC

Fig. S20 (a) XPS survey spectrum of LDH-PN-TC; (b)) P 2p, N 1s, O 1s, C 1s, Al 2p and Mg 2p High-resolution spectra of LDH-PN-TC

Fig. S21 (a) XPS survey spectrum of LDH-PN-HC; (b) P 2p, N 1s, O 1s, C 1s, Al 2p and Mg 2p High-resolution spectra of LDH-PN-HC.

Fig. S22 (a) A microscopic image of the wood and EP/LDH-PN composite coated wood substrate and the inset shows a cross-sectional image of EP/LDH-PN composite coated wood substrate; (b) Histogram diagram for the calculation of average thickness of the EP/LDH-PN composite.

Fig. S23. Digital photos of $E\frac{P}{L_1-20}$ wt%, $E\frac{P}{L_3-20}$ wt%, $E\frac{P}{Mg-A1-NO_3-LDH-20}$ wt% composite coated wood substrates during the UL94 vertical burning process.

Synthesis of Cyclotriphosphazene dicarboxylic acid [*dispiro***-N3P3(O2C12H8)² (OC6H4COOH)²](L1)**

In a double neck 250ml round-bottom flask equipped with a condenser, methyl 4 hydroxy benzoate (26.82mmol), $dispi \sim N_3P_3(O_2C_1/H_8)Cl_2$ (1) (12.19mmol), potassium carbonate (36.57mmol) and acetone (160ml) were added. The mixture was reflux under nitrogen atmosphere for 24 h, and then cooled to room temperature. After the solvent was removed by rota-evaporator, the crude product was extracted twice with dichloromethane (2 \times 80 mL). The solvent was evaporated under vacuum to give the light yellowish gel. It is immersed in hexane for overnight to give $dispio-N₃P₃(O₂C₁₂H₈)₂(OC₆H₄COOCH₃)₂ (2)$ as a pale yellow solid. Yield: 90%. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.10 (d, $J = 8.6$ Hz, 4H), 7.51 (dd, *J* = 7.6, 1.6 Hz, 4H), 7.43 (dd, *J* = 8.7, 1.2 Hz, 4H), 7.38 (t, *J* = 8.5 Hz, 4H), 7.31 (t, *J* = 7.4 Hz, 4H), 7.07 (d, *J* = 8.0 Hz, 4H), 3.92 (s, 6H). ¹³C NMR (126 MHz, CDCl3) δ (ppm): 166.40, 154.37, 147.94, 131.48, 129.70, 128.66, 127.25, 126.24, 121.75, 121.06, 52.27. ³¹P NMR (203 MHz, CDCl₃) δ (ppm): 25.11 (d, $J = 94.0$ Hz, C₁₂H₈O₂, 2P), 8.83 (t, $J =$ 94.1 Hz, $(C_8H_7O_3)_2$, 1P). Mass spectrum (ESI = 70 eV): m/z = 806.2000 [M]⁺. FT-IR (ATR, cm-1): 1712(s), 1603(s), 1503(s), 1476(m), 1435(s), 1273(s), 1226(s), 1166(s), 1090(s), 1035(m), 1012(s), 968(s), 936(s), 882(s), 774(s), 754(s), 719(s), 690(s), 650(m), 638(m), 603(s), 557(s).

A quantity of **(2)** (11.17mmol) was added into the solution of sodium hydroxide (111.73mmol in 300ml of methanol). The mixture was reflux at 80° C for 24 h. After the evaporation of the solvent, the obtaining solid was dissolved in water and acidified with diluted hydrochloric acid ($pH=2~3$) with stirring to give the white slurry as the product (L_1). The resulting slurry was centrifuged and washed with water (until $pH=7$) dried at 80^oC in a hot air oven for overnight. Yield: 82%.¹H NMR (500 MHz, DMSO) δ (ppm): 13.13 (s, 2H), 8.13 (d, *J* = 8.5 Hz, 4H), 7.68 (d, *J* = 7.5 Hz, 4H), 7.49 (ddd, *J* = 19.7, 15.1, 7.4 Hz, 12H), 7.21 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (126 MHz, DMSO) δ (ppm): 167.05, 153.61, 147.49, 132.10, 130.80, 130.42, 128.81, 128.23, 127.29, 122.03, 121.46. ³¹P NMR (203 MHz, DMSO) δ (ppm):24.98 (d, *J* = 93.5 Hz, C₁₂H₈O₂, 2P), 9.38 (t, *J* = 93.5 Hz, (C₇H₅O₃)₂, 1P). Mass spectrum (ESI = 70 eV): $m/z = 778.0500$ [M+1]⁺. FT-IR (ATR, cm⁻¹): 1693(s), 1600(s), 1501(s), 1475(s), 1432(s), 1274(s), 1228(m), 1160(s), 1093(s), 1011(m), 971(m), 932(s), 883(s), 777(s), 751(s), 715(s), 609(s), 537(s).

Synthesis of Cyclotriphosphazene Tetracarboxylic acid [*spiro***-N3P3(O2C12H8) (OC6H4COOH)⁴](L2)**

Compound **(L2)** was synthesized by the similar synthetic procedure of Compound (L_1) using *spiro*-N₃P₃(O₂C₁₂H₈)Cl₄ (3) instead of compound (1).

spiro-N₃**P**₃(O₂**C**₁₂**H**₈)(OC₆**H**₄COOCH₃)₄ (4): Yield: 79%. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.97 (d, *J* = 8.8 Hz, 8H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.31 (m, 4H), 7.19 (d, *J* = 8.7 Hz, 8H), 6.79 (dd, $J = 9.1$, 1.6 Hz, 2H), 3.92 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ (ppm): 166.04, 153.91, 147.68, 131.38, 129.84, 128.51, 127.32, 126.37, 121.52, 120.83, 52.25. ³¹P NMR (203 MHz, CDCl₃) δ (ppm): 24.35 (t, *J* = 94.5 Hz, C₁₂H₈O₂, 1P), 8.29 (d, *J* = 94.4 Hz, $(C_8H_7O_3)_4$, 2P). Mass spectrum (ESI = 70 eV): m/z = 925.0000 [M+1]⁺. FT-IR (ATR, cm⁻¹): 1712(s), 1600(s), 1502(s), 1479(m), 1272(s), 1233(s), 1181(s), 1161(s), 1095(s), 1013(s), 944(s), 895(s), 853(s), 767(s), 751(s), 718(s), 689(s), 630(s), 610(s), 557(s).

*spiro***-N₃P**₃(O₂C₁₂H₈)(OC₆H₄COOH)₄ (L₂): Yield: 81%. ¹H NMR (500 MHz, DMSO) δ (ppm): 13.14 (s, 4H), 7.99 (d, *J* = 8.7 Hz, 8H), 7.65 (dd, *J* = 5.8, 3.7 Hz, 2H), 7.43 (dd, *J* = 5.8, 3.6 Hz, 4H), 7.23 (d, *J* = 8.7 Hz, 8H), 6.76 (dd, *J* = 7.1, 3.7 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ (ppm): 166.86, 153.39, 147.26, 131.87, 130.61, 130.43, 128.58, 128.05, 127.35, 121.35. ³¹P NMR (203 MHz, DMSO) δ (ppm): 24.60 (t, $J = 93.2$ Hz C₁₂H₈O₂, 1P),

8.84 (d, $J = 93.2$ Hz, $(C_7H_5O_3)_4$, 2P). Mass spectrum (ESI = 70 eV): m/z = 866.0550 [M-1]⁺. FT-IR (ATR, cm-1): 1683(s), 1597(s), 1503(s), 1474(m), 1421(s), 1315(s), 1271(s), 1177(s), 1153(s), 1097(s), 1015(m), 945(s), 880(s), 854(s), 804(s), 771(s), 754(s), 736(s), 715(s), 689(s), 625(s), 613(s), 545(s).

 Fig. S2 ¹³C-NMR spectrum of compound **2**.

 Fig. S3 ³¹P-NMR spectrum of compound **2**.

 Fig. S5 ¹H-NMR spectrum of compound **L1**.

 Fig. S6 ¹³C-NMR spectrum of compound **L1**.

 Fig. S7 ³¹P-NMR spectrum of compound **L1**.

 Fig. S9 ¹H-NMR spectrum of compound **4**.

 Fig. S10 ¹³C-NMR spectrum of compound **4**.

 Fig. S11 ³¹P-NMR spectrum of compound **4**.

 Fig. S13 ¹H-NMR spectrum of compound **L2**.

 Fig. S14 ¹³C-NMR spectrum of compound **L2**.

 Fig. S15 ³¹P-NMR spectrum of compound **L2**.

 Fig. S17 FT-IR spectra of compounds **2**, **L1**, **4** and **L²**

Fig. S18 N₂ adsorption and desorption isotherm for Mg-Al-NO₃-LDH.

Fig. S19 Elemental mapping analysis of C, N, O, Mg, Al, P of a) LDH-PN-TC, b) LDH-PN-HC

Fig. S20 (a) XPS survey spectrum of LDH-PN-TC; (b)) P 2p, N 1s, O 1s, C 1s, Al 2p and Mg 2p High-resolution spectra of LDH-PN-TC.

Fig. S21 (a) XPS survey spectrum of LDH-PN-HC; (b)) P 2p, N 1s, O 1s, C 1s, Al 2p and Mg 2p High-resolution spectra of LDH-PN-HC.

Fig. S22 (a) A microscopic image of the wood and EP/LDH-PN composite coated wood substrate and the inset shows a cross-sectional image of EP/LDH-PN composite coated wood substrate; (b) Histogram diagram for the calculation of average thickness of the EP/LDH-PN composite.

Fig. S23. Digital photos of EP/L_1-20 wt%, EP/L_3-20 wt%, $EP/Mg-A1-NO_3-LDH-20$ wt% composite coated wood substrates during the UL94 vertical burning process.