Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information: ALD based Nanostructured Zinc Oxide coated Antiviral Silk Fabric

Udit Kumar^{1,2}, *Candace R. Fox*³, *Corbin Feit*², *Elayaraja Kolanthai*^{1,2}, *Jeremy Sheiber*³, *Yifei Fu*^{1,2}, *Sushant Singh*⁴, *Parag Banerjee*^{2,5,6,7}, *Griffith D. Parks*², *Sudipta Seal*^{1,2,5,8}*

¹Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, United States of America.

²Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, United States of America.

³Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States of America.

⁴Amity Institute of Biotechnology, Raipur-493225, C.G, India

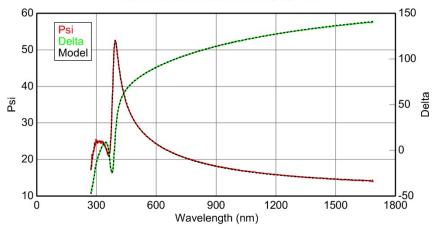
⁵NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32816, United States of America.

⁶Renewable Energy and Chemical Transformation (REACT) Faculty Cluster, University of Central Florida, Orlando, FL

⁷Florida Solar Energy Center (FSEC), University of Central Florida, Orlando, FL

⁸Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32816, United States of America.

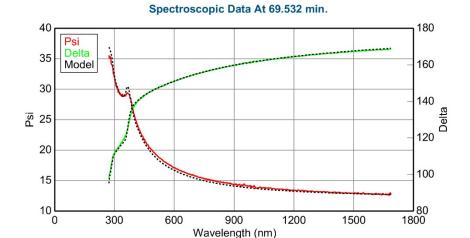
*Corresponding author: <u>Sudipta.seal@ucf.edu</u>; Engineering 1 Rm 207, 12800 Pegasus Dr, Orlando, FL 32816, USA


S1. Ellipsometry

Sample: POST 200 cy ZnO at 100C on Si-native

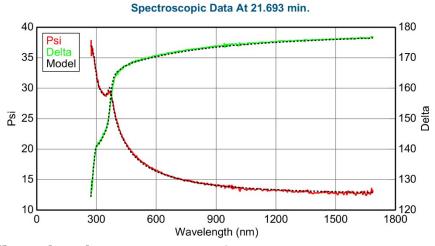
Fit Results Optical Model MSE = 4.043Layer # 2 = ZnO (GenOsc) Thickness # 2 = 45.30 nm (fit) **Show Dialog** ZnO Thickness = 45.30 ± 0.006 nm - e1 Components Einf = 1.826UV Pole Amp. = 40.2335 UV Pole En. = 6.750 IR Pole Amp. = 0.2271 - e2 Components Oscillator Menu: Add Delete Delete All Sort Fit Menu: All None Amp. Br. En. 1: Type = $\frac{PSemi-M0}{M}$ Amp1 = $\frac{4.154}{M}$ Br1 = $\frac{0.0897}{M}$ Eo1 = 3.324 WR1 = 1.7753 PR1 = 0.938 AR1 = 0.437 O2R1 = 0.6452: Type = Gaussian Amp2 = 1.580523 Br2 = 1.8737 En2 = 4.961Type = Gaussian Amp3 = 1.900752 Br3 = 4.3791E-05 En3 = 3.374Layer # 1 = INTR_JAW Thickness # 1 = 1.57 nm Substrate = SL_JAW

Experimental and Model Generated Data Fits



Sample: in situ 50 cy ZnO at 100C on Si-native

Fit Results Optical Model MSE = 9.102- Layer # 2 = <u>ZnO (GenOsc)</u> Thickness # 2 = <u>8.34 nm</u> (fit) **Show Dialog** Thickness # $2 = 8.34 \pm 0.025$ nm - e1 Components ZnO Thickness = 8.34 ± 0.025 nm Einf = 1.923UV Pole Amp. = 39.4332 UV Pole En. = 7.999IR Pole Amp. = <u>0.4196</u> - e2 Components Oscillator Menu: Add Delete Delete All Sort Fit Menu: All None Amp. Br. En. 1: Type = PSemi-M0 Amp1 = 3.857 Br1 = 0.1561Eo1 = <u>3.521</u> WR1 = <u>2.0746</u> PR1 = <u>0.785</u> AR1 = 0.331 O2R1 = -0.000401402: Type = Gaussian Amp2 = 2.631504 Br2 = 2.6711 En2 = 6.559 3: Type = Gaussian Amp3 = 0.388221 Br3 = 0.7921 En3 = 0.220Layer # 1 = <u>INTR_JAW</u> Thickness # 1 = <u>1.70 nm</u> Substrate = SI_JAW


Experimental and Model Generated Data Fits

Sample: in situ 15 cy ZnO at 100C on Si-native

Fit Results Optical Model - Layer # 2 = <u>ZnO (GenOsc)</u> Thickness # 2 = <u>**2.42 nm**</u> (fit) MSE = 5.265**Show Dialog** Thickness # $2 = 0.01 \pm 0.014$ nm - e1 Components Angle Offset = 0.0847 ± 0.007324 Einf = 1.923UV Pole Amp. = 39.4332 UV Pole En. = 7.999 IR Pole Amp. = <u>0.4196</u> - e2 Components Oscillator Menu: Add Delete Delete All Sort Fit Menu: All None Amp. Br. En. 1: Type = <u>PSemi-M0</u> Amp1 = <u>3.857</u> Br1 = <u>0.1561</u> Eo1 = 3.521 WR1 = 2.0746 PR1 = 0.785AR1 = 0.331 O2R1 = -0.00040140 2: Type = Gaussian Amp2 = 2.631504 Br2 = 2.6711 En2 = 6.559 3: Type = Gaussian Amp3 = 0.388221 Br3 = 0.7921 En3 = 0.220Layer # 1 = NTVE_JAW Native Oxide = 1.71 nm Substrate = SI_JAW

Experimental and Model Generated Data Fits

S2. XPS (X-ray photoelectron spectroscopy)

Sample					Peak shift
Details		(eV)			
	C-C/C-H	C-N	C-O	C=O	
Control silk	282.976	283.634	284.6	286.4	1.624
15 Cycle	283.048	283.691	284.59	286.41	1.552
50 Cycle	283.07	283.413	284.548	286.454	1.53
200 Cycle	283.17	284.077	284.9	286.519	1.43

Sample						
Details	Peak Positions					
	C-C/C-H	C-N	С-О	C=O		
Control silk	284.6	285.258	286.224	288.024		
15 Cycle	284.6	285.243	286.142	287.962		
50 Cycle	284.6	284.943	286.078	287.984		
200 Cycle	284.6	285.507	286.33	287.949		