A two-photon lysosome-targeted probe for endogenous formaldehyde in living cells

Ting Cao^{al}, Hong Ma^b

^a Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China

^b Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. China

¹Corresponding author: Fax: +86-931-8912582 E-mail address: <u>caoting@sxnu.edu.cn</u>

TABLE OF CONTENTS

1. Spectroscopic/photophysical data of AMNT in addition of FA. (Table S1)

2. Photophysical Properties of *AMNT* in the absence and in addition of FA. (Table S2)

3. Time course fluorescence spectra of *AMNT* with different equiv of FA. (Figure S1)

4. Linear calibration curve of fluorescence intensity of *AMNT* with FA. (Figure S2)

Emission response of *AMNT* upon addition of 100 equiv of FA and other analyte.
 (Figure S3)

6. Fluorescence intensity of *AMNT* in the absence and presence of FA as a function of pH. (Figure S4)

7. Light stability of AMNT. (Figure S5)

8. Fluorescence spectra of the free probe *AMNT*, *AMNT* treated with FA, and *AMNT* after treated with NaHSO₃. (Figure S6)

9. Reaction-time profiles of the probe treated with FA, free probe, or FA preincubated with NaHSO₃ then treated with the probe. (Figure S7)

10. The fluorescence integral area and two-photon absorption cross-section spectrum of *AMNT* and *AMNT-FA*. (Figure S8)

Effects of *AMNT* at varied concentrations on the viability of HeLa cells. (Figure S9)

- 12. Global analyses of decay times τ_1 , τ_2 , and the relative amplitude(%). (Figure S10)
- 13. NMR Spectrum spectra of *AMNT*. (Figure S11)

14. MS Spectrum spectra of AMNT and AMNT-FA. (Figure S12-13)

1. General information and methods

Measurements of photophysical properties. UV-vis absorption spectra were obtained on a Varian UV-Cary5000 spectrophotometer. In order to get the corrected steady-state excitation and emission spectra, a Hitachi F-7000 spectrofluorimeter was used. Fluorescence emission spectra were collected using Hitachi F-7000 spectrofluorimeter with 1 cm quartz cells. Fluorescein (in 0.1 N NaOH pH = 13, $\Phi_f = 0.89$) were used as fluorescence standard for quantum yield test.[1]

Time-resolved fluorescence spectroscopy. Fluorescence lifetimes were detected by a FLS920. The monitored wavelength was 540 nm. Fluorescence decay histograms

were recorded using the time-correlated single photon counting technique in 4096 channels through a FLS920 spectrometer equipped with a supercontinue white laser (400-700 nm). Histograms of the instrument response functions (using LUDOX scatterer) and sample decays were obtained until it typically reached 1.0×10^4 counts. The fitting parameters (decay times and pre-exponential factors) were decided by minimizing the reduced chi-square χ^2 .

Cell culture, fluorescence imaging. To obtain the cell permeability of *AMNT*, HeLa cells were cultured in DMEM (Dulbecco's Modified Eagle Medium) subjoined with 10% FBS (fetal bovine serum). The cell lines were kept in a moist atmosphere containing 5% CO₂ at 37 °C. Cells were incubated with *AMNT* (10 μ M) in 1.0 mL of fresh culture medium for 0.5 h after removal of the culture medium. Cells were incubated and rinsed with phosphate-buffered saline (PBS) three times to remove free compound before imaging.

Imaging	C _{amnt}	C _{FA}	Cell	Imaging	Excitation	Emission
method			type	instrument	wavelength	wavelength
Single-	10	300/	HeLa	Olympus	458 nm	510-580 nm
photon	μM	500 µM		FV1000-IX81		
Two-	10	300/	HeLa	Olympus	810 nm	510-550 nm
photon	μM	500 µM		FV1000 MPE		

Cytotoxicity tests. The cytotoxic activity experiment of complex against HeLa cells was tested according to standard 3-(4,5-diethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-etrazolium, inner salt (MTS) assay procedures. HeLa cells were seeded in 96-well assay plates at a density of 10⁴ cells per well (100 μ L total volume/well) for 24 h. The as-prepared *AMNT* (10 μ M,) were added in the serum-free medium and incubated with the cells for 24 h after that. The control experiment was finished by detecting the growth culture medium without *AMNT*. The optical absorbance of the cells was detected at 528 nm through a microplate reader (German Berthold Mithras2LB943).

The limit of detection calculation. The detection limit (DL) for FA was calculated

by the linear function in Figure S2 and the following equation:

$$DL = 3.3\sigma / k$$

Where σ is the standard derivation of fluorescence intensity of (I_{528 nm}) *AMNT* blank solutions; k is the slope of the linear calibration curve in Figure S2; the concentration of *AMNT* is 10 μ M.

Table S1. Spectroscopic data of AMN	T (10)	μ M) i	in the absence	and addition	of FA.
-------------------------------------	---------------	----------------	----------------	--------------	--------

Compounds	Reaction time	λ_{abs} / nm	λ _{ems} / nm	$\Phi_{\rm f}$		
AMNT	-	435	540	0.115		
AMNT+ 100 equiv. FA	30 min	435	528	0.217		
i o i'	¹ H NMR (CDCl₃) Spectrun	n of ΑΜΝΤ : δ 8	8.46 (d, 1H, J = 8.0		
f g	Hz, H-a), 8	3.25 (d, 1H, <i>J</i> = 8	3.0 Hz, H-c), 8.00	0 (d, 1H, <i>J</i> = 8.0 Hz,		
	H-e), 7.53	3 (t, 1H, J = 8.0	Hz, H-b), 7.73 (c	d, 1H, J = 8.0 Hz, H-		
	d), 4.28 (t, 2H, J = 8.0 Hz, H-f), 3.67 (t, 4H, J = 4.0 Hz, H-i+i'),					
AMNT	2.74 (t, 2H, J = 8.0 Hz, H-g), 2.67 (m, 4H, H-h+h').					
	MS Spectrum of AMNT (($C_{18}H_{19}N_3O_3$): the exact molecular weight calcd for AMNT is 325.14, found is 326.19 (M+1).					
AMNT+FA	MS Spec molecular 338.36 (M	ctrum of AIV weight calcd t I+1).	1NT+FA ((C ₁₉ H ₁₉ N for AMNT+FA i	N_3O_3): the exact s 337.14, found is		

Table S2. Photophysical Properties of *AMNT* (10 μ M) in the absence and in addition of FA at the same excitation wavelength (435 nm), but at different emission wavelength. Global analyses of decay times τ_i (ns), and the relative amplitude α_i (%), each datum was recorded 0.5 h after FA addition.

Addition of HCHO / µM	Monitored Wavelength / nm	τ ₁ (ns)	τ_2 (ns)	α1(%)	α ₂ (%)	χ²
	530			95.5	4.5	1.04
0	540	4.13±0.0004	10.33±0.0025	95.4	4.6	1.06
	550			95.7	4.3	1.12
	520			58.4	41.6	1.07
100	530	4.63±0.0010	7.70±0.0005	54.2	45.8	1.02
	540			56.6	43.4	1.00
	520			37.1	62.9	1.03
500	530	4.65±0.0018	7.54±0.0007	40.2	59.8	1.04
	540			43.1	56.9	1.04
	520			29.7	70.3	1.05
1000	530	4.73±0.0026	7.48±0.0007	32.7	67.3	1.04
	540			34.2	65.8	1.02

Table S3. Comparison of the proposed method with other methods for FA detection.

Linear range	Organelle -targeted ability	Detection Limit	Excitation and Emission	React time	Reference
0-100 μΜ	no	5 μΜ	λ _{ex} = 645 nm λ _{em} = 662 nm	120 min	J. Am. Chem. Soc. 2015, 137, 10886- 10889
0-5000µM	no	10 µM	λ _{ex} = 633 nm λ _{em} = 649 nm	180 min	J. Am. Chem. Soc. 2015, 137,10890- 10893
0-200 μM	no	0.71 μM	λ_{ex} = 440 nm λ_{em} = 543 nm	30 min	Angew. Chem. Int. Ed. 2016, 55, 3356- 3359
0-3000µM	no	59.6 µM	λ _{ex} = 318 nm λ _{em} = 451/359 nm	240 min	Chem. Commun., 2016, 52, 4029-4032
0 -150 μM	no	0.57 μM	λ_{ex} = 365 nm λ_{em} = 513 nm	180 min	Talanta, 2016, 160, 645-652
0–200 μM	no	0.5 μM	λ _{ex} =405 nm λ _{em} =570/495 nm	120 min	Chem. Sci., 2017, 8, 5616-5621

0–500 μM	no	5 μΜ	λ_{ex} = 440 λ_{em} = 510 nm	240 min	Sens. Actuators, B, 2017, 241, 1050- 1056
2.0-10.0	no	0 77µM	λ_{ex} =530 nm	2 min	Chem. Commun.,
μΜ		ο., , μ	λ _{em} =560 nm	2	2016, 52, 9582-9585
0-1000	no	8 3uM	λ_{ex} = 520 nm	6 min	Dyes Pigm., 2017,
μM		0.5μινι	λ_{em} =620 nm	0 11111	138, 23-29
0-1000	no	0.104	λ_{ex} = 482 nm	00 min	Talanta 2018, 189,
μM	10	0.104 μινι	λ_{em} = 548 nm	30 11111	274-280
0.200.004	lysosome-	E 02 11M	$\lambda_{\rm ex}$ = 440 nm	20 min	Anal. Chem. 2016,
0-200 μινι	targeted	5.02 μινι	λ_{em} = 543 nm	50 11111	88, 9359-9363
10-250	lysosome-	2	λ _{ex} =405 nm	40 min	Chem. Commun.,
μM	targeted	5 μινι	λ_{em} =506 nm	40 11111	2017, 53, 6520-6523
					Spectrochim. Acta A
	hucocomo) - 492 mm		Mol. Biomol.
0-200 μM	torgotod	0.27 μM	$\Lambda_{ex} = 482 \text{ mm}$	60 min	Spectrosc., 2021,
	largeleu		Λ _{em} – 546 mm		245,118949-
					118955.
0 500	lysosome	1 77	λ _{ex} = 435 nm	20 min	This work
υ-500 μινι	-targeted	1.77 μινι	λ _{em} = 528 nm	50 mm	THIS WOLK

Figure S1. Time course fluorescence spectra of *AMNT* (10 μ M) with different equiv of FA, $\lambda_{ex} = 435$ nm.

Figure S2. Linear calibration curve of fluorescence intensity of *AMNT* with FA (0-500 μ M), $\lambda_{ex} = 435$ nm.

Figure S3. Specific selectivity of *AMNT* (10 μ M) reacted with 1 mM different kinds of species. All spectra were obtained after 0.5 h of incubation with different analytes,

 $\lambda_{ex} = 435$ nm. Each bar represent as: 0) Probe *AMNT*, 1) P-anisaldehyde, 2) Phydroxynonenal, 3) P-nitrobenzaldehyde, 4) Methyglyoxal, 5) Acetaldehyde, 6) Glucose, 7) H₂O₂, 8) Na₂S, 9) Fe³⁺, 10) Cu²⁺, 11) Ag⁺, 12) Hg²⁺, 13) FA.

Figure S4. Fluorescence intensity of *AMNT* in the absence and presence of 500 μ M FA as a function of pH, Each data point was acquired 0.5 h after addition of FA in PBS buffer at 25 °C, *AMNT* = 10 μ M, λ_{ex} = 435 nm.

Figure S5. Hitachi F-7000 spectrofluorimeter was used to detection the light stable of *AMNT*.

Figure S6. Fluorescence spectra of the free probe *AMNT* (10 μ M), *AMNT* (10 μ M) treated with FA (1 mM), and *AMNT* (10 μ M) treated with NaHSO₃ (200 μ M), Incubation time: 30 min, $\lambda_{ex} = 435$ nm.

Figure S7. Reaction-time profiles, free probe, 1 mM FA pre-incubated with 10 μ M *AMNT*, and FA pre-incubated with 200 μ M NaHSO₃ then treated with the probe, respectively.

Figure S8. The fluorescence integral area (black line) and two-photon absorption cross-section (red line) spectrum of *AMNT* (a) and *AMNT-FA* (b).

Figure S9. a) Effects of FA and b) Effects of *AMNT* at varied concentrations on the viability of HeLa cells. The cell viability data were checked three times.

Numerical Results

0-435-540-ADD.FL

Global Analysis (Reconvolution)

1

Fitting range : [249; 4096] channels

Global	χ²	:	1.073
χ°		:	1.058

	В,	۸B,	1,(%)	∆f;(%)	τ (ns)	Δτ (ns)
1	0.0340	5.4e-5	95.44	0.1670	4.133 linked	0.0004
2	0.0006	5.3e-5	4.5591	0.3819	10.333 linked	0.0025

Δf (%)

τ (ns)

Δt (ns)

0.0004

0.0026

```
Shift : -0.1714 ns (± 0 ns)
Decay Background : 26.02 (±0)
```

IRF Background : 5.9000

0-435-550-ADD.FL

Global Analysis (Reconvolution)

Fitting range Global X ³ X ²	: [2 : 1. : 1.	: [249; 4096] channels : 1.073 : 1.120				
	B	ΔB	f,(%)	I		
1	0.0336	5.3e-5	95.67	T		

	Contract of the second	1			
1	0.0336	5.3e-5	95.67	0.1708	4.133 linked
2	0.0006	5.2e-5	4.3251	0.3894	10.333 linked
Shift		0.1464 ns (±	0 ns)		

```
Decay Background : 25.74
                        (±0)
IRF Background : 5.9000
```

0-435-530-ADD.FL

Global Analysis (Reconvolution)

Fitting range Global χ² χ²	: [2 : 1. : 1.	49; 4096] cha 073 041	annels			
	в,	ΔB,	1,(%)	Δf, (%)	τ, (ns)	Δτ (ns)
1	0.0338	5.3e-5	95.48	0.1622	4.133 linked	0.0004
2	0.0006	5.2e-5	4.5165	0.3723	10.333 linked	0.0025

: -0.1772 ns (± 0 ns) Shift Decay Background : 26.36 (± 0)

IRF Background : 5.9000 1.0 erical Results

10-435-530-ADD.FL

Global Analysis (Reconvolution)

Fittin	g ra	nge
Glot	lso	Xª

: [250; 4096] channels : 1.030

χ,	: 1.016
----	---------

	В,	ΔB	1,(%)	Δf (%)	τ,(ns)	At (ns)
1	0.0221	0.0002	54.18	0.5665	4.631 linked	0.0010
2	0.0112	0.0002	45.82	0.9601	7.704 linked	0.0005

Shift : -0.1505 ns (± 0 ns)

Decay Background : 33.53 (±0)

IRF Background : 5.9000

10-435-540-ADD.FL

Global Analysis (Reconvolution)

Fitting range Global X ² X ²	: [2 : 1 : 1	250; 4096] cha 030 003	annels			
	B	ΔB,	f, (%)	∆f ₁ (%)	τ, (ns)	Δt , (ns)
1.	0.0229	0.0002	56.61	0.5555	4.631 linked	0.0010
2	0.0105	0.0002	43.39	0.9480	7.704 linked	0.0005

: -0.1453 ns (± 0 ns) Shift

Decay Background : 33.21 (±0) IRF Background : 5.9000

10-435-520-ADD.FL

Global Analysis (Reconvolution)

Fitting range : [250; 4096] channels Global X^a : 1.030

χa			: 1.071	1	
11.1.1.1	1	Β,		ΔΒ.	f,

	8,	ΔB	f ₁ (%)	Δf ₁ (%)	τ ₁ (ns)	At (ns)
1	0.0495	0.0004	58.35	0.5302	4.631 linked	0.0010
2	0.0212	0.0005	41.65	0.9453	7.704 linked	0.0005

Shift : -4.3200 ns (± 0 ns)

Decay Background : 32.40 (±0)

IRF Background : 5.9000

Numerical Results

50-435-530-ADD.FL

Global Analysis (Reconvolution)

```
Fitting range : [240; 4096] channels
```

Global X ²	:	1.037
χ°	;	1.040

	В,	ΔB i	f _i (%)	∆f ₁ (%)	τ, (ns)	Δτ (ns)
1	0.0172	0.0004	40.18	0.9663	4.656 linked	0.0018
2	0.0158	0.0004	59.82	1.5803	7.542 linked	0.0007

Shift : -0.0916 ns (± 0 ns) Decay Background : 35.71 (± 0)

IRF Background : 5.9000

50-435-540-ADD.FL

Global Analysis (Reconvolution)

Fitting rang Global X ^a X ^a	e : (2 : 1. : 1.	40; 4096] cha 037 036	annels			
	В,	Δ8,	t,(%)	∆f ₁ (%)	τ (ns)	Δτ (ns)
1	0.0182	0.0004	43.11	0.9422	4.656 linked	0.0018
2	0.0148	0.0004	56.89	1.5628	7.542 linked	0.0007

Shift : -0.1293 ns (± 0 ns)

Decay Background : 34.76 (± 0) IRF Background : 5.9000

50-435-520-ADD.FL

Global Analysis (Reconvolution)

Fitting range	: [240; 4096] channels
Global X ²	: 1.037
χ°	: 1.033

	В,	ΔB,	1,(%)	Δf (%)	τ,(ns)	Δt (ns)
1	0.0162	0.0004	37.11	0.9765	4.656 linked	0.0018
2	0.0169	0.0004	62.89	1.5768	7.542 linked	0.0007

 Shift
 : -0.1026 ns (± 0 ns)

 Decay Background
 : 36.34 (± 0)

 IRF Background
 : 5.9000

S15

```
Numerical Results
    100-435-530-ADD.FL
    Global Analysis (Reconvolution)
                    : [225; 4096] channels
       Fitting range
       Global X<sup>2</sup>
                          : 1.038
       Xª.
                          : 1.042
                                            f1(%)
                                                       ∆f, (%)
                      в,
                                 ΔB,
                                                                  T (ns)
                                                                              Δt , (ns)
                    0.0141
                                0.0005
                                            32.70
                                                       1,2718
                                                                4.734 linked
                                                                              0.0026
            1
           2
                    0.0184
                                0.0005
                                            67.30
                                                       2.0285
                                                                 7.477 linked
                                                                              0.0007
       Shift
                          : -0.0661 ns (± 0 ns)
       Decay Background : 36.68
                                     (±0)
       IRF Background
                         : 5.9000
    100-435-540-ADD.FL
    Global Analysis (Reconvolution)
                          : [225; 4096] channels
       Fitting range
       Global X<sup>2</sup>
                          : 1.038
       \chi^2
                          : 1.018
                                 AB,
                                            1,(%)
                                                       ∆f, (%)
                      в,
                                                                   τ,(ns)
                                                                              At , (ns)
                                                                              0.0025
                    D.0146
                                0.0005
                                            34.20
                                                       1.2454
                                                                 4.734 linked
            1
                                0.0005
                                                       1.9954
                                                                 7.477 linked
                                                                              0.0007
            2
                    0.0178
                                            65.80
                          : -0.0671 ns (± 0 ns)
       Shift
                                      (±0)
       Decay Background : 35.81
       IRF Background
                          : 5.9000
    100-435-520-ADD.FL
    Global Analysis (Reconvolution)
                          : [225; 4096] channels
       Fitting range
       Global X2
                          : 1.038
       X2
                         : 1.054
                                 AB,
                                                                   τ (ns)
                       в,
                                            1, (%)
                                                       ∆f , (%)
                                                                              Δτ (ns)
                                                                              0.0026
                                                       1.2893
                                                                 4.734 linked
                     0.0130
                                0.0005
                                            29.65
            1
                                                       2.0343
                                                                 7.477 linked
                                                                              0.0007
            2
                     0.0196
                                0.0005
                                            70.35
                           : -0.0547 ns (± 0 ns)
       Shift
       Decay Background : 36.92
                                      (±0)
       IRF Background
                          : 5.9000
```

Figure S10. Global analyses of decay times τ_1 , τ_2 , and the relative amplitude (%).

Figure S11. ¹H NMR (CDCl₃, 400 MHz) spectrum of *AMNT*. *AMNT*: δ 8.46 (d, 1H, *J* = 8.0 Hz, H-a), 8.25 (d, 1H, *J* = 8.0 Hz, H-c), 8.00 (d, 1H, *J* = 8.0 Hz, H-e), 7.53 (t, 1H, *J* = 8.0 Hz, H-b), 7.73 (d, 1H, *J* = 8.0 Hz, H-d), 4.28 (t, 2H, *J* = 8.0 Hz, H-f), 3.67 (t, 4H, *J* = 4.0 Hz, H-i+i'), 2.74 (t, 2H, *J* = 8.0 Hz, H-g), 2.67 (m, 4H, H-h+h').

Figure S12. MS Spectrum of *AMNT*((C₁₈H₁₉N₃O₃): calcd for *AMNT* (C₁₈H₁₉N₃O₃) 325.14, found 326.19 (M+1).

Figure S13. MS Spectrum of AMNT+FA (C₁₉H₁₉N₃O₃), the exact molecular weight of AMNT+FA is 337.14, found is 338.36 (M+1).

References

[1] Lynn W["]urth, Inga J. Wolf, Wolfgang Marquardt, On the Numerical Solution of Discounted Economic NMPC on Infinite Horizons, The International Federation of Automatic Control, **2013**, 18-20.