Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Melamine derived N rich C entrapped Au nanoparticles for sensitive and selective monitoring of dopamine from blood samples

Faria Shakeel^a, Muhammad Waseem Fazal^b, Anam Zulfiqar^c, Farhan Zafar^b, Naeem Akhtar^{b*}, Arsalan Ahmed^b, Hafiz Badaruddin Ahmad^{a*}, Safeer Ahmed^d, Asad Syed^e, Ali H. Bahkali^e, Muhammad Abdullah^f and Zahid Shafiq^{a,g*}

^aInstitute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
^bInterdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
^cDepartment of Biochemistry, Bahauddin Zakariya University, 60800, Multan, Pakistan
^dDepartment of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
^eDepartment of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
^fDepartment of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
^gDepartment of Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany

Dr. Naeem Akhtar: <u>naeemkhan@cuilahore.edu.pk</u>

Prof. Dr. Zahid Shafiq: zahidshafiq@bzu.edu.pk

Dr. Badaruddin Ahmad: hafizbadar@googlemail.com

S-1 Instruments

The electrochemical measurements were performed with a Gamry electrochemical workstation (Inreface-1010). A conventional three-electrode cell was used at room temperature (24°C), graphitic lead pencil electrode (GPE) as a working electrode, platinum wire as a counter electrode, and Ag/AgCl electrode as reference electrode, respectively. Electrochemical impedance spectroscopy (EIS) was performed in 5mM [Fe(CN)₆]^{4-/3-} as a redox probe. The morphology of the modified electrode was examined using a transmission electron microscopy (TEM) system (F200×, The Thermo Scientific, Waltham, MA USA). Raman spectroscopy was performed using a EnSpectr R532 Raman spectrometer (Enhanced Spectrometry, Inc., Torrance, CA, USA).

S-2 Synthesis of benzimidazolium-1-acatate ionic liquid (IL)

Benzimidazolium-1-acetate ionic liquid (IL) was synthesized by conventional neutralization of benzimidazole with acetic acid as reported in literature ¹. Briefly, 15 mM of benzimidazole was dissolved into 10 mL of methanol in a round bottom flask under classical conditions and the solution was continuously stirred for 2h at 65°C. Next, 0.95 mL of acetic acid solution was added dropwise into the above prepared solution and kept under reflux overnight. Finally, the resulting light-yellow mixture was heated at 100°C in a rotary evaporator for 3h and upon cooling at room temperature, the IL product was made and used for analytical purposes.

S-3 NMR analyses of benzimidazolium-1-acetate ionic liquid (IL)

The purities of BAIL were verified by NMR.

¹H NMR: $\delta = 1.97$ (s, 3H), 5.11 (s, 1H), 7.23 –7.25 (m, 2H), 7.58 –7.6 (m, 2H), 8.23 (s, 1H) ²(Figure S1).

¹³C NMR: 21.5 (methyl peak), 115.7, 122.1, 138.4, 142.3, 172.5 (carbonyl carbon of acetate ion)³ (Figure S2).

Figure S1. ¹H NMR of IL

Figure S2. ¹³C NMR of IL

S-4 Fourier transforms infrared (FTIR) spectroscopy analyses of IL

FTIR spectroscopy has been employed to analyze the chemical structure of as-synthesized IL. The band at 2981 cm⁻¹ is assigned to the alkyl group. The peak around 3112 cm⁻¹ corresponds to alkenyl C—H stretching. The band at 1701 and 1619 cm⁻¹ are due to the occurrence of C=O bonds and C=N, respectively. Also, the absence of stretching vibrations around 3000 cm⁻¹ (O—H) verifies the presence of acetate ion.

Figure S3 FTIR analysis of benzimidazolium-1-acetate ionic liquid (IL)

Scherer equation used to calculate the crystalline size

$$d = k.\lambda / \beta.Cos\theta$$

Where,

d = Crystallite size (nm)

 β (the peak width of the diffraction peak or full width at the half maximum: FWHM)

 $\cos\theta = (\theta \text{ is the half of diffraction angle}).$

Scherer constant k = 0.9

 $\lambda = 0.15406$ nm X-ray wavelength

Williamson-Hull equation to calculate the strain

$$\beta \cos (\theta) = (k\lambda/d) + (\eta \sin(\theta))$$

 η = Strain factor

Table S1 Table showing the calculation for average crystalline size and strain.

Para	Parameter Peak		FWHM		Sherer	X-axis	Y-axis	Intercepts	Slope	Micro-
		position								strain
к	Lambda	2θ	β	Crystalline	Average	4 Sinθ	βCosθ	C=K A/D	m	*10 ³
	(A)			size (nm)	size (nm)					
Au-N	NPs	I	I	I	I		I	I		<u> </u>
0.9	0.154	38.1167	0.3945	21.29714	17.19782	1.306124	0.006508	0.0053	0.002	1.6
		44.3051	0.55006	15.58759		1.508296	0.008892			
		64.5425	0.54746	17.15554		2.135712	0.008079			
		77.5342	0.69046	14.75099		2.504625	0.009396			
			- F		I					
				y = R ³	0.0016x + 0.0053 = 0.4643					
				βCos(θ)	/.					
				1.2 1.6 4	2.0 2.4 Sin(θ)					

NC@	Au-NPs												
0.9	0.154	23.8106	18.4801	0.43	9163	3.202313	0.8	3251	78	0.3156	0.2964	-0.08	-80.1
		38.185	0.9401	8.93	8894		1.3	3083	76	0.015505			
		43.0662	10.0202	0.85	1982		1.4	1681	55	0.162679			
		60.9684	20.6313	0.4	4665		2.0)292	03	0.31031			
		77.6111	1.91016	5.33	4874		2.5	5067	18	0.02598			
					• y= R ²	-0.0801x + 0.2984 = 0.128		2					
				1000	-								
				(e)sc									
				- ŭ			-						
				1		•	•	3					
					0.8 1	2 1.6 2.0 2 4Sin(θ)	2.4						

<u>S-6</u>

Tauc and Davis–Mott relationship

$$(\alpha hv)^n = A (hv-E_g)$$

where

 α = absorption coefficient

hv =energy

Eg = band gap energy

A = constant

Absorption edge was observed for the transitions for n = 2

Table S2 Table showing the calculation for band gap.

Waveleng	Absorban	Absorban	Absorption	Absorption	Energy	(αhv)²	(αhv)²
th (nm)	ce (a.u.)	ce (a.u.)	coefficient (a) cm ⁻¹	coefficient (a) cm ⁻¹	(eV)		
698	0.029	0.025	0.066787	0.057575	1.7765	0.1186	0.1022
					04	47	82
696	0.029	0.026	0.066787	0.059878	1.7816	0.1189	0.1066
					09	88	79
694	0.029	0.026	0.066787	0.059878	1.7867	0.1193	0.1069
					44	31	87
692	0.029	0.027	0.066787	0.062181	1.7919	0.1196	0.1114
					08	76	23
690	0.029	0.028	0.066787	0.064484	1.7971	0.1200	0.1158
					01	23	84
688	0.03	0.028	0.06909	0.064484	1.8023	0.1245	0.1162
					26	23	21
686	0.03	0.029	0.06909	0.066787	1.8075	0.1248	0.1207
					8	86	23
684	0.03	0.029	0.06909	0.066787	1.8128	0.1252	0.1210
					65	51	76
682	0.03	0.03	0.06909	0.06909	1.8181	0.1256	0.1256
					82	18	18
680	0.03	0.03	0.06909	0.06909	1.8235	0.1259	0.1259
670	0.001	0.001	0.074000	0.074000	29	88	88
6/8	0.031	0.031	0.071393	0.071393	1.8289	0.1305	0.1305
676	0.031	0.031	0 071393	0.071393	1 8343	0 1309	0 1309
0,0	0.031	0.031	0.071333	0.071333	2.0545	58	58
674	0.031	0.032	0.071393	0.073696	1.8397	0.1313	0.1355
	0.001	0.002	0107 2000	01070000	63	46	83
672	0.031	0.033	0.071393	0.075999	1.8452	0.1317	0.1402
_					38	37	36
670	0.032	0.034	0.073696	0.078302	1.8507	0.1363	0.1449
					46	93	17
668	0.032	0.034	0.073696	0.078302	1.8562	0.1368	0.1453
					87	01	51
666	0.032	0.035	0.073696	0.080605	1.8618	0.1372	0.1500
					62	12	75

11								1
	664	0.033	0.036	0.075999	0.082908	1.8674	0.1419	0.1548
						7	26	28
	662	0.033	0.037	0.075999	0.085211	1.8731	0.1423	0.1596
						12	55	1
	660	0.033	0.038	0.075999	0.087514	1.8787	0.1427	0.1644
						88	86	2
	658	0.034	0.039	0.078302	0.089817	1.8844	0.1475	0.1692
						98	6	6
	656	0.034	0.041	0.078302	0.094423	1.8902	0.1480	0.1784
						44	1	83
	654	0.035	0.042	0.080605	0.096726	1.8960	0.1528	0.1833
						24	29	95
	652	0.035	0.043	0.080605	0.099029	1.9018	0.1532	0.1883
						4	98	37
	650	0.036	0.045	0.082908	0.103635	1.9076	0.1581	0.1977
						92	63	04
	648	0.037	0.046	0.085211	0.105938	1.9135	0.1630	0.2027
						8	58	21
	646	0.037	0.048	0.085211	0.110544	1.9195	0.1635	0.2121
						05	63	9
	644	0.038	0.05	0.087514	0.11515	1.9254	0.1685	0.2217
						66	05	17
	642	0.038	0.051	0.087514	0.117453	1.9314	0.1690	0.2268
						64	3	56
	640	0.039	0.053	0.089817	0.122059	1.9375	0.1740	0.2364
							2	89
	638	0.04	0.055	0.09212	0.126665	1.9435	0.1790	0.2461
						74	42	83
	636	0.041	0.058	0.094423	0.133574	1.9496	0.1840	0.2604
						86	95	27
	634	0.042	0.06	0.096726	0.13818	1.9558	0.1891	0.2702
						36	8	57
	632	0.043	0.063	0.099029	0.145089	1.9620	0.1942	0.2846
						25	97	68
	630	0.044	0.066	0.101332	0.151998	1.9682	0.1994	0.2991
				0.400.005		54	4/	/1
	628	0.045	0.069	0.103635	0.158907	1.9745	0.2046	0.3137
		0.046	0.070	0.405000	0.465046	22	3	65
	626	0.046	0.072	0.105938	0.165816	1.9808	0.2098	0.3284
	62.4	0.047	0.075	0.4002.44	0 4 7 2 7 2 5	31	45	53
	624	0.047	0.075	0.108241	0.1/2/25	1.98/1	0.2150	0.3432
	622	0.040	0.070	0 4405 44	0 4 70 6 2 4	1 0005	94	30
	622	0.048	0.078	0.110544	0.1/9634	T.9932	U.22U3	0.3581
	<u> </u>	0.040	0.001	0 112047	0 1005 43	69	//	
	620	0.049	0.081	0.112847	0.186543	2	0.2250	0.3730
	C10	0.05	0.005		0 105755	2 000 4	94	
	619	0.05	0.085	0.11515	0.195755	2.0064	0.2310	0.3927

					72	45	77
616	0.051	0.088	0.117453	0.202664	2.0129	0.2364	0.4079
					87	31	6
614	0.052	0.092	0.119756	0.211876	2.0195	0.2418	0.4278
					44	53	93
612	0.054	0.096	0.124362	0.221088	2.0261	0.2519	0.4479
610	0.055	0.1	0.126665	0 2202	44	/5	50
010	0.055	0.1	0.120005	0.2303	2.0327	0.2574 83	0.4081
608	0.057	0 104	0 131271	0 239512	2 0394	0 2677	0 4884
	0.037	0.101	0.1012/1	0.233312	74	24	78
606	0.058	0.109	0.133574	0.251027	2.0462	0.2733	0.5136
					05	2	53
604	0.06	0.113	0.13818	0.260239	2.0529	0.2836	0.5342
					8	81	65
602	0.061	0.118	0.140483	0.271754	2.0598	0.2893	0.5597
					01	67	59
600	0.063	0.123	0.145089	0.283269	2.0666	0.2998	0.5854
F09	0.065	0 1 2 0	0.140605	0 207097	b/ ۲۰۲۵۲	0.2104	23
598	0.005	0.129	0.149095	0.297087	2.0735 70	0.3104	0.0100
596	0.067	0 134	0 154301	0 308602	2 0805	0 3210	0.6420
550	0.007	0.134	0.134301	0.500002	37	29	58
594	0.069	0.14	0.158907	0.32242	2.0875	0.3317	0.6730
					42	25	65
592	0.072	0.145	0.165816	0.333935	2.0945	0.3473	0.6994
					95	17	58
590	0.074	0.151	0.170422	0.347753	2.1016	0.3581	0.7308
					95	75	71
588	0.077	0.157	0.1//331	0.3615/1	2.1088	0.3739	0.7624
E 96	0.09	0 162	0 1 9 4 2 4	0 275 290	2 1160	0.2000	97
500	0.08	0.105	0.16424	0.575569	2.1100 //1	0.3696 59	0.7945
584	0.082	0.17	0.188846	0.39151	2.1232	0.4009	0.8312
	0.001	0.27			88	74	88
582	0.085	0.176	0.195755	0.405328	2.1305	0.4170	0.8635
					84	73	85
580	0.089	0.183	0.204967	0.421449	2.1379	0.4382	0.9010
					31	05	29
578	0.092	0.189	0.211876	0.435267	2.1453	0.4545	0.9337
					29	44	91
576	0.095	0.197	0.218785	0.453691	2.1527	0.4709	0.9766
E7/	0.000	0.204		0 160012	7 1 6 0 2	95	1 01 40
5/4	0.099	0.204	0.22/99/	0.409012	2.1002 79	0.4925 37	25
572	0.103	0.211	0.237209	0.485933	2.1678	0.5142	1.0534
					32	29	21

570	0 107	0 2 1 9	0 246421	0 504357	2 1 7 5 4	0 5360	1 0971
570	0.107	0.215	0.210121	0.001007	39	74	98
568	0 111	0 2 2 7	0 255633	0 522781	2 1830	0 5580	1 1412
500	0.111	0.227	0.200000	0.022701	99	72	82
566	0 116	0 234	0 267148	0 538902	2 1908	0 5852	1 1806
500	0.110	0.231	0.207110	0.00002	13	71	33
564	0.12	0 242	0 27636	0 557326	2 1985	0.6076	1 2253
504	0.12	0.242	0.27030	0.557520	82	0.0070	27
562	0 125	0.25	0 287875	0 57575	2 2064	0.6351	1 2703
502	0.125	0.25	0.207075	0.07070	06	69	38
560	0.13	0.257	0.29939	0.591871	2,2142	0.6629	1,3105
500	0.10	0.207	0.25505	0.0010/1	86	35	72
558	0.135	0.265	0.310905	0.610295	2.2222	0.6909	1.3562
	01200	0.200	0.010000	01020200	22		11
556	0.14	0.272	0.32242	0.626416	2.2302	0.7190	1.3970
					16	66	43
554	0.146	0.28	0.336238	0.64484	2.2382	0.7525	1.4433
					67	9	24
552	0.152	0.287	0.350056	0.660961	2.2463	0.7863	1.4847
					77	58	67
550	0.158	0.294	0.363874	0.677082	2.2545	0.8203	1.5265
					45	7	12
548	0.164	0.301	0.377692	0.693203	2.2627	0.8546	1.5685
					74	32	62
546	0.17	0.307	0.39151	0.707021	2.2710	0.8891	1.6056
					62	44	89
544	0.176	0.313	0.405328	0.720839	2.2794	0.9239	1.6430
					12	09	89
542	0.182	0.318	0.419146	0.732354	2.2878	0.9589	1.6754
					23	32	96
540	0.187	0.322	0.430661	0.741566	2.2962	0.9889	1.7028
					96	25	55
538	0.192	0.326	0.442176	0.750778	2.3048	1.0191	1.7304
					33	42	18
536	0.197	0.33	0.453691	0.75999	2.3134	1.0495	1.7581
					33	84	86
534	0.201	0.332	0.462903	0.764596	2.3220	1.0749	1.7754
					97	06	66
532	0.205	0.334	0.472115	0.769202	2.3308	1.1004	1.7928
					2/	18	//
530	0.208	0.334	0.479024	0.769202	2.3396	1.1207	1.7996
	0.000	0.004	0 404007	0 70000	23	35	42
528	0.209	0.334	0.481327	0.769202	2.3484	1.1303	1.8064
F 2C	0 211	0 222	0 405022	0.70000	205	1 1 4 5 5	1 0070
520	0.211	0.333	0.485933	0.766899	2.35/4	1.1455	1.8078
E24	0 211	0.22	0 405022	0.75000	2 2 6 6 4	45	1 700 /
524	0.211	0.33	0.485933	0.75999	2.3004	1.1499	1.7984

					12	18	5
522	0.211	0.327	0.485933	0.753081	2.3754	1.1543	1.7889
					79	24	28
520	0.209	0.323	0.481327	0.743869	2.3846	1.1477	1.7738
					15	8	41
518	0.208	0.318	0.479024	0.732354	2.3938	1.1466	1.7531
E16	0.205	0 212	0.472115	0 720920	22	98 1 1 2 4 E	1 7222
510	0.205	0.313	0.472115	0.720839	2.4031	1.1345	1.7322
514	0 202	0 307	0.465206	0 707021	2 4124	1 1 2 2 2	1 7056
511	0.202	0.507	0.100200	0.707021	51	87	54
512	0.199	0.3	0.458297	0.6909	2.4218	1.1099	1.6732
					75	38	73
510	0.195	0.293	0.449085	0.674779	2.4313	1.0918	1.6406
					73	93	39
508	0.191	0.286	0.439873	0.658658	2.4409	1.0737	1.6077
					45	06	48
506	0.187	0.278	0.430661	0.640234	2.4505	1.0553	1.5689
	0.400	0.07	0.4404.46	0.004.04	93	75	53
504	0.182	0.27	0.419146	0.62181	2.4603	1.0312	1.5298
E02	0 1 7 9	0.262	0 400024	0 602286	2 4701	32	1 4004
502	0.178	0.262	0.409934	0.003380	2.4701	1.0125	1.4904
500	0 173	0 255	0 398419	0 587265	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.9880	1 4564
500	0.175	0.235	0.350415	0.507205	2.40	79	1.4504
498	0.169	0.247	0.389207	0.568841	2.4899	0.9691	1.4163
					6	1	91
496	0.165	0.24	0.379995	0.55272	2.5	0.9499	1.3818
						88	
494	0.161	0.234	0.370783	0.538902	2.5101	0.9307	1.3527
					21	1	09
492	0.158	0.228	0.363874	0.525084	2.5203	0.9170	1.3233
100	0.454	0.000	0.054660	0 544266	25	81	82
490	0.154	0.222	0.354662	0.511266	2.5306	0.8975	1.2938
/188	0 151	0.217	0 3/17753	0 /00751	2 5/09	0.8836	1 2698
400	0.151	0.217	0.347755	0.499751	2.5409	0.8830	1.2098
486	0.148	0.213	0.340844	0.490539	2.5514	0.8696	1.2515
	0.2.0	0.220			4	43	81
484	0.146	0.209	0.336238	0.481327	2.5619	0.8614	1.2331
					83	36	52
482	0.144	0.205	0.331632	0.472115	2.5726	0.8531	1.2145
					14	61	7
480	0.142	0.202	0.327026	0.465206	2.5833	0.8448	1.2017
					33	17	82
478	0.14	0.199	0.32242	0.458297	2.5941	0.8364	1.1888
					42	03	88

476	0.139	0.197	0.320117	0.453691	2.6050	0.8339	1.1818
					42	18	84
474	0.137	0.195	0.315511	0.449085	2.6160	0.8253	1.1748
					34	87	22
472	0.136	0.193	0.313208	0.444479	2.6271	0.8228	1.1676
					19	35	99
470	0.135	0.191	0.310905	0.439873	2.6382	0.8202	1.1605
					98	6	16
468	0.134	0.19	0.308602	0.43757	2.6495	0.8176	1.1593
					73	63	74
466	0.133	0.189	0.306299	0.435267	2.6609	0.8150	1.1582
					44	45	21
464	0.133	0.188	0.306299	0.432964	2.6724	0.8185	1.1570
					14	58	59
462	0.132	0.187	0.303996	0.430661	2.6839	0.8159	1.1558
					83	2	87
460	0.132	0.186	0.303996	0.428358	2.6956	0.8194	1.1547
					52	67	04
458	0.131	0.185	0.301693	0.426055	2.7074	0.8168	1.1535
					24	11	11
456	0.131	0.185	0.301693	0.426055	2.7192	0.8203	1.1585
					98	93	71
454	0.13	0.185	0.29939	0.426055	2.7312	0.8177	1.1636
					78	17	74
452	0.13	0.184	0.29939	0.423752	2.7433	0.8213	1.1625
					63	35	05
450	0.13	0.184	0.29939	0.423752	2.7555	0.8249	1.1676
					56	86	72
448	0.13	0.184	0.29939	0.423752	2.7678	0.8286	1.1728
					57	69	85
446	0.129	0.184	0.297087	0.423752	2.7802	0.8259	1.1781
					69	82	45
444	0.129	0.184	0.297087	0.423752	2.7927	0.8297	1.1834
					93	02	52
442	0.129	0.184	0.297087	0.423752	2.8054	0.8334	1.1888
					3	57	07
440	0.129	0.184	0.297087	0.423752	2.8181	0.8372	1.1942
					82	45	1
438	0.13	0.185	0.29939	0.426055	2.8310	0.8475	1.2061
					5	88	83
436	0.13	0.185	0.29939	0.426055	2.8440	0.8514	1.2117
					37	76	16
434	0.13	0.185	0.29939	0.426055	2.8571	0.8554	1.2173
					43		
432	0.13	0.185	0.29939	0.426055	2.8703	0.8593	1.2229
					7	6	36
430	0.13	0.186	0.29939	0.428358	2.8837	0.8633	1.2352

					21	57	65
428	0.131	0.186	0.301693	0.428358	2.8971	0.8740	1.2410
					96	64	37
426	0.131	0.187	0.301693	0.430661	2.9107	0.8781	1.2535
					98	67	67
424	0.131	0.187	0.301693	0.430661	2.9245	0.8823	1.2594
					28	1	8
422	0.132	0.188	0.303996	0.432964	2.9383	0.8932	1.2722
					89	58	16
420	0.132	0.188	0.303996	0.432964	2.9523	0.8975	1.2782
					81	12	75
418	0.132	0.189	0.303996	0.435267	2.9665	0.9018	1.2912
					07	06	23
416	0.133	0.19	0.306299	0.43757	2.9807	0.9130	1.3042
					69	07	95
414	0.133	0.19	0.306299	0.43757	2.9951	0.9174	1.3105
					69	17	96
412	0.134	0.191	0.308602	0.439873	3.0097	0.9288	1.3238
					09	02	9
410	0.134	0.192	0.308602	0.442176	3.0243	0.9333	1.3373
					9	33	13
408	0.135	0.193	0.310905	0.444479	3.0392	0.9449	1.3508
					16	07	68
406	0.135	0.193	0.310905	0.444479	3.0541	0.9495	1.3575
					87	62	22
404	0.136	0.194	0.313208	0.446782	3.0693	0.9613	1.3713
					07	31	11
402	0.137	0.195	0.315511	0.449085	3.0845	0.9732	1.3852
					77	18	37
400	0.137	0.196	0.315511	0.451388	3.1	0.9780	1.3993
						84	03

Figure S4 (A) Raman spectra of NC@Au-NPs. (B) Zeta potential of NC@Au-NPs and Au-NPs.

Figure S5 FTIR spectra of IL modified NC@Au-NPs.

Table S3 Full width at Half Maxima (FWHM) of (A) NC@Au-NPs and (B)Au-NPs.

(A)NC@Au-NPs

		Value	Standard Error
	y0	0.10659	0.00641
	xc	528.60563	1.94352
	w	67.65688	4.75435
Book1_C	A	18.95404	1.48874
	sigma	33.82844	2.37717
	FWHM	79.65989	5.59782
	Height	0.22353	0.01201

(B) Au-NPs

		Value	Standard Error
	y0	0.07522	0.00414
	xc	520.5291	2.27891
	w	63.87246	5.45418
Book1_B	A	9.96513	0.93388
	sigma	31.93623	2.72709
	FWHM	75.20407	6.42181
	Height	0.12448	0.00823

FWHM=0.5346wL+sqrt (0.2166*wL²+wG²)

whereas,

wL and wG (widths of the Lorentzian and Gaussian contributions) are given by the Origin software after the fitting.

Table S4 Table showing the peak current and peak potential difference of each electrode calculated

 from figure S2.

Electrode	Anodic	Ер	Ec	Peak Potential
	current			difference
Au-NPS	0.096270791	0.445678228	0.026025712	0.419652517
<u>NC@Au-NPs</u>	0.2329252	0.430804696	0.022319052	0.408485644
Au-NPs/PDA	0.102208367	0.446608261	0.012255572	0.458863833

NC@Au-NPs/PDA	0.26041408	0.348232281	0.067018129	0.281214152
Au-NPs/PDA-IL	0.124572978	0.359583405	0.085441434	0.274141971
<u>NC@Au-NPs/PDA-IL</u>	0.32852887	0.310595934	0.102511091	0.208084843

Figure S6. Chronoamperometric curve of (A) NC@Au-NPs, NC@Au-NPs/PDA, NC@Au-NPs/PDA-IL electrodes and (B) Au-NPs, Au-NPs/PDA, Au-NPs/PDA-IL in PBS against 1 mM of $[Fe(CN)_6]^{3-}$. Electrochemical impedance spectroscopy (EIS) of NC@Au-NPs (C) and Au (D) based electrodes by using 2mM of $[Fe(CN)_6]^{3-}$ as a redox probe. (C & D) Dependence of IC/IL on the (time)^{1/2} derived from their respective chronoamperogram data.

Figure S7. Optimization parameters pH at which the sensitive behavior of NC@Au-NPs/PDA/IL electrode was determined.

Figure S8. (A) cyclic voltammetry of Au-NPs/PDA-IL electrode at the scan rate ranging from 5 to 200 mV/s in the presence of 5 μ M DA in phosphate buffer (pH 7.0) and its corresponding calibration plots (B-C) scan rate (mV/s) vs Current(μ A) and square root scan rate (mV/s) vs Current(μ A), respectively and (D-

E) log of scan rate (mV/s) vs oxidizing potential(mV) and log of scan rate (mV/s) vs log of Current(μ A), respectively.

Figure S9: Selective amperometric response of the NC@Au-NPs/PDA/IL electrode exposed towards simultaneous monitoring of DA and co-existing electroactive species such as organic (DA, AA, UA, & Lac) and inorganic (KCl, NaCl, Na₂SO₄, & K₂SO₄) species in 0.1M PBS (pH;7) electrolyte.

Sr.	Modified Electrode	Applied	Detection Limit	Linear Range (µM)	Ref.
#		Potential (V)	(µM)		
1	RGO/Au nanoplate	-0.2–6	1.4	6.8–41	S ⁴
2	RGO-AuNPs-CSHMs	-0.2–8	0.3	1–200	S ⁵
3	AgNPs/rGO	-1–1	5.4	10-800	S ⁶
4	RGO/AuNPs	-1.5–1	0.137	0.14–700	S ⁷
5	PANI-AuNPs	-0.4–1.4	16	0.270-0.361	S ⁸
6	Au NPs/N-doped CN	-0.3–0.4	0.007	0.02–700	S ⁹
7	NC@Au-NPs/PDA/IL	-0.6-0.6	0.002	0.05-1	This
					work

 Table S5 comparison of the electrochemical determination of NC@Au-NPs/PDA/IL modified

 electrode towards DA detection with the reported data.

Table S6. Determination of DA in DA hydrochloride injection using NC@Au-NPs/PDA/IL electrode.

DA sample	Added (µM)	Found [a] (µM)	Recovery (%)	RSD [b] (%)
1	0	1.78	-	-
2	2	3.75	87.7	3.7
3	2	4.7	92.8	3.65

1, 2 and 3 diluted DA hydrochloride injection sample, [a] Standard deviation, [b] Relative standard deviation (n = 3).

References:

- 1. A. S. Saleemi, M. Hafeez, A. Munawar, N. Akhtar, W. Abbas, M. E. Mazhar, Z. Shafiq, A. P. Davis and S.-L. Lee, *Journal of Materials Chemistry C*, 2020, **8**, 12984-12992.
- 2. N. Touj, A. S. Al-Ayed, M. Sauthier, L. Mansour, A. H. Harrath, J. Al-Tamimi, I. Özdemir, S. Yaşar and N. Hamdi, *RSC Advances*, 2018, **8**, 40000-40015.
- 3. Y. Abbas, S. Ali, M. Basharat, W. Zou, F. Yang, W. Liu, S. Zhang, Z. Wu, N. Akhtar and D. Wu, ACS Applied Nano Materials, 2020, **3**, 11383-11390.
- 4. C. Wang, J. Du, H. Wang, C. e. Zou, F. Jiang, P. Yang and Y. Du, *Sensors and Actuators B: Chemical*, 2014, **204**, 302-309.
- 5. X. Liu, L. Xie and H. Li, *Journal of Electroanalytical Chemistry*, 2012, **682**, 158-163.
- 6. B. Kaur, T. Pandiyan, B. Satpati and R. Srivastava, *Colloids and Surfaces B: Biointerfaces*, 2013, **111**, 97-106.
- 7. C.-S. Lee, S. H. Yu and T. H. Kim, *Nanomaterials*, 2018, **8**.
- 8. S. Mahalakshmi and V. Sridevi, *Electrocatalysis*, 2021, **12**, 415-435.
- 9. Z. Shi, X. Wu, Z. Zou, L. Yu, F. Hu, Y. Li, C. Guo and C. M. Li, *Biosensors and Bioelectronics*, 2021, **186**, 113303.