## **Supporting Information for**

# Determination of Aflatoxin $B_1$ in *Pixian Douban* based on

## **Aptamer-Magnetic Solid-Phase extraction**

Chaoyi Zeng  $^{a,d\#}\!\!$  , Chi Xu  $^{a\#}\!\!$  , Hongyun Tian  $^c$  , Kun Shao^a, Yaning Song^a, Xiao Yang^a ,

Zhenming Che<sup>a,b</sup> and Yukun Huang

<sup>a</sup> School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-

Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China

<sup>b</sup> Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of

Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China

<sup>c</sup> Shandong Institute of Food and Drug Control, Jinan 250101, China

<sup>d</sup> Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand.

<sup>#</sup> The authors contributed equally in this work.

Figure S1 TEM images of Fe<sub>3</sub>O<sub>4</sub> (a) and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> (b)



Different Morphology of  $Fe_3O_4$  before and after embedding  $SiO_2$ . Figure S1. (a) Transmission Electron Microscope of  $Fe_3O_4$ . (b) Transmission Electron Microscope of  $Fe_3O_4@SiO_2$ .

### Figure S2 Particle size distribution of Fe<sub>3</sub>O<sub>4</sub>



The data are the characterization of the particle size of the prepared Fe3O4 by nanoparticle size analyzer.

#### Figure S3 XRD pattern of Fe<sub>3</sub>O<sub>4</sub>



The crystal form of the prepared nano-magnetic bead  $Fe_3O_4$  was characterized by X-ray diffraction ( XRD ).

Figure S4 The dispersion stability of  $Fe_3O_4@SiO_2$  in deionized water (a) and magnetic response to the applied magnetic field (b)



Figure S4. (a)  $Fe_3O_4@SiO_2$  dispersed uniformly in deionized water . Figure S4. (b) In the presence of an external magnetic field,  $Fe_3O_4$  @ SiO<sub>2</sub> can respond quickly and

gather in the direction of magnet, indicating that the  $Fe_3O_4$  surface coated with  $SiO_2$  still maintains strong magnetic properties.



Figure S5 The FT - IR spectra of Fe3O4 (a) and Fe3O4@SiO2 - NH2 (b)

Fourier Transform Infrared Spectroscopy ( FT-IR ) Analysis of the Surface Groups of  $Fe_3O_4$  and Amino Modified Silica Magnetic Beads.

Figure S6 UV - V is absorption spectra of avidin (a) and aptamer (b) before and after the reaction



(a1) avidin stock solution; (b1) avidin solution after glutaraldehyde; (a2) aptamer solution; (b2) aptamer solution after reacting with avidinized magnetic beads.

Figure S7 Detection of AFB<sub>1</sub> by HPLC-MS/MS. Standard curve of AFB<sub>1</sub>(a). MRM chromatogram of AFB<sub>1</sub> in the Pixian Douban sample (b, c)



The linear equations of  $AFB_1$  in blank *Pixian Douban* samples are  $y = 183.23x - 95.46(R^2 = 0.99989)$ . The mass spectrometric analysis was performed in MRM. For fragmentation of the

 $AFB_1[M+H]^+$  ions is 313 m/z. The detected and quantified fragment ions were: 241 and 269 m/z for  $AFB_1$ .