SERS based Y-shaped aptasensor for early diagnosis of acute

kidney injury

Dan Li,^{‡ab} Linlu Zhao,^{‡bc} Jin Qian,^{bc} Heng Liu,^{bc} Ziyi Cheng,^{*bc} Jinmao You^{*a} and Fabiao Yu^{*bc}

^aKey Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China.

^bLaboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China

^cKey Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.

* E-mail: chengziyi@hainmc.edu.cn; jmyou6304@163.com; yufabiao@hainmc.edu.cn

Figure S1 a) HR-TEM image of AuNPs. b) TEM-EDS mapping of AuNPs. c) EDS spectrum of AuNPs.

Figure S2 DLS data of AuNPs (green line), AuNPs-DNA (purple line) and AuNPs-Y shaped DNA-MB (blue line).

Figure S3 Fluorescent intensity of safe green nucleic acid dye in two groups of biotinylated DNA conjugated streptavidin-coated magnetic beads with various concentrations of biotinylated probe DNA₂ from 0 μ M to 50 μ M. λ_{ex} = 254 nm, λ_{em} = 520 nm.

Figure S4 Electrophoresis characteristics of the Y-shaped aptamer. a) Formation of Y-shaped aptasensor of NGAL (Lane 1 - Lane 8). Lane 1: marker, Lane 2: 1.0 μ M Probe₁, Lane3: 1.0 μ M Probe₂, Lane 4: 0.3 μ M NGAL aptamer, Lane 5: 1.0 μ M Probe₁+1.0 μ M Probe₂, Lane 6: 1.0 μ M Probe₁ + 0.3 μ M NGAL aptamer, Lane 7: 1.0 μ M Probe₂ + 0.3 μ M NGAL aptamer, Lane 8: 1.0 μ M Probe₂ + 1.0 μ M Probe₂ + 0.3 μ M NGAL aptamer. b) Formation of Y-shaped aptasensor of Cys C (Lane 1 - Lane 8). Lane 1: marker, Lane 2: 1.0 μ M Probe₁, Lane3: 1.0 μ M Probe₂, Lane 6: 1.0 μ M Probe₁, Lane 5: 1.0 μ M Probe₁, Lane 7: 1.0 μ M Probe₂, Lane 6: 1.0 μ M Probe₁, + 0.3 μ M Cys C aptamer, Lane 7: 1.0 μ M Probe₂, + 0.3 μ M Cys C aptamer, Lane 8: 1.0 μ M Probe₁, + 1.0 μ M Probe₁, + 0.3 μ M Cys C aptamer.

Figure S5 Standard working curve for NGAL. a) SERS spectra of AuNPs-Y shaped DNA-MB (NGAL) after incubation at various concentrations, respectively. b) SERS signals at 1618 cm⁻¹ in the spectra of a.

Figure S6 Standard working curve for Cys C. a) SERS spectra of AuNPs-Y shaped DNA-MB (Cys C) after incubation at various concentrations, respectively. b) SERS signals at 1618 cm⁻¹ in the spectra of a.

Figure S7 a, b) UV-vis spectra of the probe supernatant after adding each target protein with different concentration and incubating, respectively.

Figure S8 Photographs of H&E staining of paraffin-embedded sections of rat kidneys after drug treatment. a) Saline injection at 24 h. b) Cisplatin + NAC injection at 24 h. c) Cisplatin injection at 24 h. Scale bar, 50 μm.

NGAL aptamer	(5'-)AGCAGCACAGAGGTCAGATGGCGCTGGATAGCAAGATCACGTTATCATC GTAAACCCTATGCGTGCTACCGTGAA (-3')						
NGAL	Probe ₁	(5'-) CTGTGACTGCTGCT (-3') [-(CH ₂) ₆ -SH-3']					
	Probe ₂	(5'-) ACCTCGTGTCACAG (-3') [-biotin]					
	(5'-)CCTAACCGATATCACACTCACGAACTGTCGGAACTCGGGCCAAATGGAC GAGCGACCATTGGTTGTTCGTCATTGGAGTATC(-3')						
Cys-C aptamer	(5'-)CCTAAC GAGCGA	CCGATATCACACTCACGAACTGTCGGAACTCGGGCCAAATGGAC					
Cys-C aptamer	(5'-)CCTAAC GAGCGA Probe _{1'}	CCGATATCACACTCACGAACTGTCGGAACTCGGGCCAAATGGAC .CCATTGGTTGTTCGTCATTGGAGTATC(-3') (5'-) CTGTGACGGTTAGG (-3') [-(CH ₂) ₆ -SH-3']					

Table S1 Sequence list

	Assay	Biomarker	Range (ng/mL)	LOD (ng/mL)	Assay Time	Dual assay	Ref.
	SERS-based Y-	NGAL	0.01-10	0.052	_		Thic
1	shaped aptasensor	Cys C	1-1000	0.34	5 mins Yes	Yes	method
2	ELISA	NGAL	0.25-2	0.032	4 h	No	[1]
		Cys C	0.5-31.3	0.5	- 4 n		[2]
3	RIA	NGAL	4-25	4	3.5 h	- No	[3]
		Cys C	0.125-62.5	0.125	ND		[4]
4	UPT-LFA	NGAL	7.68-1000	7.68	30 mins	No	[5]
5	LC-MS/MS	Cys C	250-15000	30	7-8 mins	No	[6]
	fluorescence-						
6	based	NGAL	60-1300	60	20 mins	No	[7]
	immunoassay						
7	bFQICA	Cys C	0.0-100	0.69	15 mins	No	[8]

ELISA: enzyme-linked immunosorbent assay; RIA: radioimmunoassay; UPT-LFA: UCP technologybased lateral flow assay; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; bFQICA: background fluorescence quenching immune chromatographic assay.

References

- L. Kjeldsen, C. Koch, K. Arnljots and N. Borregaard, *Journal of immunological methods*, 1996, 198, 155-164.
- 2. R. Jiang, C. Xu, X. Zhou, T. Wang and G. Yao, *Journal of Translational Medicine*, 2014, **12**, 1-8.
- 3. S. Xu, C. Petersson, M. Carlson and P. Venge, *Journal of immunological methods*, 1994, **171**, 245-252.
- 4. A. Collé, C. Tavera, P. Laurent, J. Leung-Tack and J. P. Girolami, *Journal of immunoassay*, 1990, **11**, 199-214.
- 5. L. Lei, J. Zhu, G. Xia, H. Feng, H. Zhang and Y. Han, *Talanta*, 2017, **162**, 339-344.
- 6. Y. Li, H. Ji, L. Shen, X. Shi and J. Wang, *Analytical biochemistry*, 2019, **587**, 113451.
- C. L. Dent, Q. Ma, S. Dastrala, M. Bennett, M. M. Mitsnefes, J. Barasch and P. Devarajan, *Critical care*, 2007, 11, 1-8.
- 8. B. Li, J. Song, J. Chen, L. Ma, X. Li, J. Li and M. Guan, *Analytical Letters*, 2019, **52**, 1340-1351.