Supporting Information

Nitrogen doping carbons derived from cotton pulp for outperformed supercapacitor

Jian Shen^{1*}, Jiangbin Yu¹, Hao Luo¹, Xiang Liu^{2*}, Qiongzhi Zhou¹, Tianxiang Wei¹, Xinyi Yu¹, Yahui Wu¹, Yifei Yu¹, Mingjie Li^{3*}

³ Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P. R. China

¹ College of Environment and Resources, Xiangtan University, Xiangtan 411105, China

² National Key Laboratory of Human Factors Engineering, Chinese astronaut research and training center, Beijing 100094, China

Figure S1 O1s XPS spectrum of CCP

_						
_	Sample	Sample Specific surface area		Average pore size		
_		(m²/g)	(cc/g)	(nm)		
	CCP	30.593	0.030	18.659		
	CCPN1	351.811	0.032	18.659		
_	CCPN2	252.565	0.038	18.45		

Table S1. Textural properties for the various porous carbon materials utilized

 in this work

Figure S2. SEM images of pure CCP and nitrogen doping CCP

Figure S3. C1s XPS spectrum of CCP

Figure S4. C1s XPS spectrum of CCPN2

Figure S5. N1s XPS spectrum of CCP

Figure S6. N1s XPS spectrum of CCPN2

Figure S7. O1s XPS spectrum of CCPN2

Sample	C (Atomic %)	N (Atomic %)	O (Atomic %)
CCP	90.38	3.18	6.44
CCPN1	84.35	5.64	10.01
CCPN2	81.49	11.68	6.83

Table S2. C, N, and O element atomic ratio in CCP, CCPN1, andCCPN2

Figure S8. Cyclic voltammograms of CCP in 0.1 M NaCl solution scanning from 1.0 to -1.0V vs Ag/AgCl under different scan rate

Figure S9. Cyclic voltammograms of CCPN1 in 0.1 M NaCl solution scanning from 1.0 to - 1.0V vs Ag/AgCl under different scan rate

Figure S10. Cyclic voltammograms of CCPN2 in 0.1 M NaCl solution scanning from 1.0 to - 1.0V vs Ag/AgCl under different scan rate

Table S3. Comparison of electrochemical performance of CNFN1 with other different materials

Materials	Specific capacitance (F/g)	Current density	Cycling stability	Electrolyte	Ref.
Porous carbon nanofiber	140.80	0.50A·g ⁻¹	95.4% capacity retention after 10000 cycles at 10 A g ⁻¹	6 М КОН	1
RuO ₂ -CNF(220)	188.00	1.00mA⋅cm⁻²	93% capacity retention after 3000 cycles at 1.00mA⋅cm²	6 М КОН	2
CNFs/3DGN	59.28	0.17 mA∙cm⁻²	93% capacity retention after 10000 cycles at 0.17 mA⋅cm ⁻²	6 М КОН	3
CNFs	80.00	0.30A·g ⁻¹	100% capacity retention after 2000 cycles at 1.5 A⋅g-1	6 M KOH	4
NiCoeBH41@TiC/CNF	2224.00	0.50A·g ⁻¹	91% capacity retention after 3000 cycles at 5.0 A⋅g⁻¹	6 M KOH	5
E-CNFs	320.20	20.00A∙g ⁻¹	94.5 % capacity retention after 5000 cycles at 1.0 A⋅g-1	6 M KOH	6
NiO/C@CNF	742.20	1.00A·g ⁻¹	88 % capacity retention after 5000 cycles at 2.0 A⋅g-¹	3 М КОН	7
CNF/MnFe ₂ O ₄	291.87	5.00A·g ⁻¹	Over 80 % capacity retention after 1000 cycles at 5.0 A·g ⁻¹	2 M KOH	8
Co₂P@N&P-CNFs	475.80	0.50A∙g⁻¹	91.5 % capacity retention after 10000 cycles at 0.3 A·g⁻¹	1 M KOH	9
N(Ni)-CNF(S)	203.40	1.00A∙g-¹	94 % capacity retention after 10000 cycles at 1.0 A⋅g⁻¹	1 М КОН	10
Ni-G-CNFs@PANI	318.00	0.50A·g ⁻¹	85.8 % capacity retention after 1000 cycles at 10 A⋅g⁻¹	1 M H ₂ SO ₄	11
N(11 wt %)-CNFs	495.00	0.50A⋅g ⁻¹	94 % capacity retention after 10000 cycles at 1.0 Α·σ ⁻¹	1 M H ₂ SO ₄	12

CCPN1	642.50	0.50A⋅g ⁻¹	Over 150 F/g capacity retention after 5000 cycles at 2 A·g ⁻¹	0.1 M NaCl	This work
Hierarchically porous carbons	383	10 mV⋅s⁻¹	72% capacity retention after 10000 cycles at 1 A·g ⁻¹	1 М КОН	16
CSS-based graphite / PEDOT / MnO ₂	195.70	0.50A·g ⁻¹	81 % capacity retention after 2000 cycles at 0.5A⋅g⁻¹	0.5 M Na ₂ SO ₄	15
3D N-CNFs/V ₂ O ₅	595.10	0.5A∙g ^{.1}	100 % capacity retention after 12000 cycles at 0.5A⋅g⁻¹	1 M Na₂SO₄	14
PANi/CNF	493.75	1.00 mA⋅cm ⁻²	94.3 % capacity retention after 5000 cycles at 1.00 mA⋅cm- ²	1 M H₂SO₄	13
			94.3 % capacity retention after 5000	4 14	

References

[1] He, G.; Song, Y.; Chen, S.; Wang, Li. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials. *J. Mater. Sci.* **2018**, 53, 1–10.

[2] Jeon, S.; Jeong, J. H.; Yoo, H.; Yu, K. H.; Kim, B. H.; Kim, M. H. RuO₂ nanorods on electrospun carbon nanofibers for supercapacitors. *ACS Appl. Nano Mater.* **2020**, 3, 3847–3858

[3] Lin, C. H.; Tsai, C.H.; Tseng, F. G.; Chen, I. C.; Hsieh, C. K. Electrochemical pulse deposition of Ni nanoparticles on the 3D graphene network to synthesize vertical CNFs as the full-carbon hybrid nanoarchitecture for supercapacitors. *Mater. Lett.* **2017**, 192,40–43.

[4] Daraghmeh, A.; Hussain, S.; Servera, L.; Xuriguera, E.; Cornet, A.; Cirera, A. Impact of binder concentration and pressure on performance of symmetric CNFs based supercapacitors. *Electrochim. Acta*. **2017**, 245, 531–538.

[5] Zhou, G.; Xiong, T.; He, S.; Li, Y.; Zhu, Y.; Hou, H. Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. *J. Power Sources.* **2016**, 317, 57–64.

[6] Dai, Z.; Ren, P. G.; He, W.; Hou, X.; Ren, F.; Zhang, Q.; Jin, Y. L. Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor. *Renew. Energ.* **2020**, 162, 613–623.

[7] Shin, S.; Shin, M. W. Nickel metal-organic framework (Ni-MOF) derived NiO/C@CNF composite

for the application of high performance self-standing supercapacitor electrode. Appl. Surf. Sci. **2020**, 540, 148295.

[8] Sukanya, N.; Pinit, K.; Santi, M. The structural and electrochemical properties of CNF/MnFe₂O₄ composite nanostructures for supercapacitors. *Mater. Chem. Phys.* **2018**, 220, 190–200.

[9] Sun, X.; Liu, H.; Xu, G.; Bai, J.; Li, C. Embedding Co₂P nanoparticles into N&P co-doped carbon fibers for hydrogen evolution reaction and supercapacitor. *Int. J. Hydrog. Energy.* **2021**. 46. 1560–1568.

[10] Amiri, A.; Conlee, B.; Tallerine, I.; Kennedy, W. J.; Naraghi, M, A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. *Chem. Eng. J.* **2020**, 399, 125788.

[11] Tian, D.; Lu, X.; Nie, G.; Gao, M.; Song, N.; Wang, C. Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors. *Appl. Surf. Sci.* **2018**, 458, 389–396.

[12] Ghanashyam, G.; Jeong, H. K. Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. *J. Energy. Storage.* **2021**, 33, 102150.

[13] Anand, S.; Ahmad, M. W.; Saidi, A. K. A. A.; Yang, D.; Choudhury, A. Polyaniline nanofiber decorated carbon nanofiber hybrid mat for flexible electrochemical supercapacitor. *Mater. Chem. Phys.* **2020**, 254, 123480.

[14] Sun, W.; Gao, G.; Zhang, K.; Liu, Y.; Wu, G. Self-assembled 3D N-CNFs/V₂O₅ aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. *Carbon.* **2018**, 132, 667–677.

[15] Tang, P.; Han, L.; Zhang, L. Facile synthesis of graphite/PEDOT/MnO₂ composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces. **2014**, 6, 10506–10515.

[16] Mansuer, M.; Miao, L.; Qin, Y.; Song, Z.; Zhu, D.; Duan, H.; Lv, Y.; Li, L.; Liu, M.; Gan, L. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chin. Chem. Lett. 2022, 10.1016/j.cclet.2022.03.027.

[17] Du, W.; Miao, L.; Song, Z.; Zheng, X.; Lv, Y.; Zhu, D.; Gan, L.; Liu, M. Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J. Power Sources. 2022, 536, 231512.