Supplementary Information

2D CH₃NH₃PbI₃ hybrid halide perovskite structural and compositional properties a DFT study

Sandip R. Kumavat¹, Geeta Sachdeva², Yogesh Sonvane^{1,*},

Sanjeev K. Gupta³

¹Advanced Materials Lab, Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India

²Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA

³Computational Materials and Nanoscience Group, Department of Physics, St. Xavier's College,

Ahmedabad 38009, INDIA.

Figure S1: Calculated total density of states (TDOS) for mono, bi, tri, and quad layers of 2D CH₃NH₃PbI₃.

Figure S2. Calculated SOC band structure of (a)monolayer, (b)bilayer, (c)trilayer, and (d)quad-layer CH₃NH₃PbI_{3.}

Figure S3. Calculated HSE band structure of (a)monolayer, (b)bilayer CH₃NH₃PbI_{3.}

Figure S4. The variation of formation energy with applied tensile and compressive strain.

Figure S5. The variation in conduction band minimum (CBM) valence band maximum (VBM) Vs number of layers (N) of CH₃NH₃PbI₃.

Figure S6. The variation in band gap under the tensile and compressive strain of monolayer of $CH_3NH_3PbI_3$.

Figure S7. The variation in band gap under the tensile and compressive strain of bilayer of CH₃NH₃PbI₃.

Figure S8. The variation in band gap under the tensile and compressive strain of trilayer of CH₃NH₃PbI₃.

Figure S9. The variation in band gap under the tensile and compressive strain of quadlayer of CH₃NH₃PbI₃.

Figure S10. The variation in band gap under the tensile and compressive strain of (a)monolayer (b)bilayer (c)trilayer and (d) quad-layer of CH₃NH₃PbI₃.

Figure S11. Optical properties of 2D multilayer CH₃NH₃PbI₃ perovskites with (a) real, (b) imaginary dielectric functions, (c) absorption coefficient and (d) reflectivity.