## **Supporting Information**

A Eu(III) metal–organic framework based on anthracenyl and alkynyl conjugation as a fluorescence probe for the selective monitoring of Fe<sup>3+</sup> and TNP

#### **Table of contents**

#### 1. Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid

(i)Synthesis of methyl 10-((trimethylsilyl)ethynyl)anthracene-9-carboxylate

(ii)Synthesis of methyl 10-ethynylanthracene-9-carboxylate

(iii)Synthesis of 10-[(2-amino-4-(methoxycarbonyl)phenyl)ethynyl]anthracene-9-carboxylate

(iv)Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid

Scheme S1. Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid.

**2.** Fig. S1. <sup>1</sup>H NMR spectrum for for 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid

**3. Fig. S2.** PXRD of Eu-MOF after treatment in pH = 2-12 DMF solution.

4. Fig. S3. The TGA curves of Eu-MOF.

5. Fig. S4. The solid emission spectra of ligand and Eu-MOF.

6. Fig. S5. Luminescence spectra of Eu-MOF in different solvents.

7. Fig. S6. PXRD of Eu-MOF in different solvents.

8. Fig. S7a. Time-dependent fluorescence spectrum after adding Fe<sup>3+</sup> (10<sup>-3</sup>M).

Fig. S7b. Time-dependent fluorescence spectrum after adding TNP (10<sup>-4</sup>M).

9. Fig. S8. PXRD of Eu-MOF after detection Fe<sup>3+</sup> and TNP.

10. Fig. S9. HOMO and LUMO energy level of NAEs.

11. Fig. S10. The fluorescence lifetime of Eu-MOF, after adding  $Fe^{3+}$  and TNP .

12. Fig. S11and12. XPS spectra of Eu-MOF before and after immersing in Fe<sup>3+</sup>

13. Table S1. Selected bond lengths (Å) and angles (°) for Eu-MOF

14. Table S2. A comparison of MOFs-based luminescent sensors for detection Fe<sup>3+</sup>.

15. Table S3. A comparison of MOFs-based luminescent sensors for detection TNP.

**16.** Table S4. HOMO and LUMO energy of NAEs at B3LYP/6-31G\* level of theory.

# Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid

#### (i)Synthesis of methyl 10-((trimethylsilyl)ethynyl)anthracene-9-carboxylate

Methyl 10-iodaanthracene-9-carboxylate (26.21 g, 0.0724 mol), copper iodide (0.328 g, 1.76 mmol) and Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.25 g, 0.36 mmol) were placed in a threenecked flask, add triethylamine (240 mL) and purged with N<sub>2</sub>, and stir for 15 h at 60 °C. Trimethylsilylacetylene (15.36 mL, 0.109 mol) was added with a syringe, and the reaction was monitored by thin layer chromatography (TLC). The mixture was transferred to an eggplant-shaped flask, the solvent was removed under reduced pressure, dissolved with dichloromethane, then extracted with ethyl acetate. The extract was dried with anhydrous magnesium sulfate and then filtered, and the filtrate was concentrated by a rotary evaporator. The brown-yellow solid was obtained after purified by column chromatography.

#### (ii)Synthesis of methyl 10-ethynylanthracene-9-carboxylate

Methyl 10-((trimethylsilyl)ethynyl)anthracene-9-carboxylate (21.86 g, 65.81 mmol) was dissolved in methanol (200 mL), potassium carbonate (13.64 g, 98.72 mmol) was added, and purged with N<sub>2</sub>, and stirred at room temperature for 4 h. The solvent was removed under reduced pressure, dissolved in dichloromethane, dried with anhydrous magnesium sulfate, and filtered. The filtrate was concentrated by a rotary evaporator, and methanol was recrystallized to obtain methyl 10-ethynylanthracene-9-carboxylate.

### (iii)Synthesis of 10-[(2-amino-4-(methoxycarbonyl)phenyl)ethynyl]anthracene-9 -carboxylate

Methyl 3-amino-4-iodobenzoate (2.77g, 10 mmol),  $Pd(PPh_3)_2Cl_2$  (0.35 g, 0.5 mmol) and copper iodide (0.19 g, 1 mmol) were dissolved in triethylamine in a threenecked flask, then added triethylamine solution of methyl 10-((trimethylsilyl)ethynyl)anthracene-9-carboxylate, and purged with N<sub>2</sub>, stirred at 90 °C for 24 h. The reaction was monitored by TLC. The mixture was transferred to an eggplant-shaped flask, the solvent was removed under reduced pressure, dissolved with dichloromethane, then extracted with ethyl acetate. The extract was dried with anhydrous magnesium sulfate and then filtered, and the filtrate was concentrated by a rotary evaporator. The solid was obtained after purified by column chromatography.

# (iv)Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxyl ic acid

Dissolved the above-mentioned purified product in a mixture solution of THF and aqueous, added NaOH with constant stirring, acidified with 2 M hydrochloric acid, and filter to obtain 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid. The <sup>1</sup>H NMR spectrum of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid is in Fig. S1.



Scheme S1. Synthesis of 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid.



Fig. S1. <sup>1</sup>H NMR spectrum for for 10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9carboxylic acid



Fig. S2. PXRD of Eu-MOF after treatment in pH = 2-12 DMF solution.



Fig. S4. The solid emission spectra of ligand and Eu-MOF.



Fig. S5. Luminescence spectra of Eu-MOF in different solvents.



Fig. S6. PXRD of Eu-MOF in different solvents.



Fig. S7a. Time-dependent fluorescence spectrum after adding Fe<sup>3+</sup> (10<sup>-3</sup>M).



Fig. S7b. Time-dependent fluorescence spectrum after adding TNP (10<sup>-4</sup>M).



**Fig. S8.** PXRD of Eu-MOF after detection Fe<sup>3+</sup> and TNP.



Fig. S9. HOMO and LUMO energy level of NAEs.



Fig. S10. The fluorescence lifetime of Eu-MOF, after adding  $\mathrm{Fe^{3+}}$  and TNP .



Fig. S11. XPS spectra of Eu-MOF before and after immersing in Fe<sup>3+</sup>



Fig. S12. XPS spectra of Eu-MOF before and after immersing in  $Fe^{3+}$ 

| Bond lengths  |            |              |            |  |  |  |
|---------------|------------|--------------|------------|--|--|--|
| Eu1—Eu11      | 3.9036(13) | Eu1—O16      | 2.361(8)   |  |  |  |
| Eu1—Eu12      | 3.9036(13) | Eu1—O28      | 2.331(2)   |  |  |  |
| Eu1—Eu13      | 3.9036(13) | Eu1—O27      | 2.331(2)   |  |  |  |
| Eu1—014       | 2.360(8)   | Eu1—O21      | 2.331(2)   |  |  |  |
| Eu1—O1        | 2.362(8)   | Eu1—O2       | 2.331(2)   |  |  |  |
| Eu1—O15       | 2.361(8)   | Eu1—O3       | 2.86(4)    |  |  |  |
|               |            | Bond angles  |            |  |  |  |
| Eu11—Eu1—Eu12 | 60         | O27—Eu1—Eu11 | 33.13(9)   |  |  |  |
| Eu12—Eu1—Eu13 | 90         | O2—Eu1—Eu11  | 85.93(19)  |  |  |  |
| Eu11—Eu1—Eu13 | 60         | O27—Eu1—O16  | 76.2(2)    |  |  |  |
| O14—Eu1—Eu13  | 158.7(2)   | O28—Eu1—O16  | 138.99(13) |  |  |  |
| O1—Eu1—Eu11   | 106.53(15) | O27—Eu1—O14  | 138.99(13) |  |  |  |
| O15—Eu1—Eu12  | 106.53(15) | O28—Eu1—O14  | 76.2(2)    |  |  |  |
| O15—Eu1—Eu11  | 158.7(2)   | O22—Eu1—O1   | 138.99(13) |  |  |  |
| O1—Eu1—Eu13   | 68.7(2)    | O28—Eu1—O15  | 76.2(2)    |  |  |  |
| O14—Eu1—Eu12  | 68.7(2)    | O28—Eu1—O1   | 138.99(13) |  |  |  |
| O14—Eu1—Eu11  | 106.53(15) | O27—Eu1—O1   | 76.2(2)    |  |  |  |
| O16—Eu1—Eu13  | 106.53(15) | O2—Eu1—O16   | 138.99(13) |  |  |  |
| O16—Eu1—Eu12  | 106.53(15) | O27—Eu1—O15  | 138.99(13) |  |  |  |
| O1—Eu1—Eu12   | 158.7(2)   | O22—Eu1—O14  | 76.2(2)    |  |  |  |
| O16—Eu1—Eu11  | 68.7(2)    | O2—Eu1—O15   | 76.2(2)    |  |  |  |
| O15—Eu1—Eu13  | 106.53(15) | O22—Eu1—O16  | 76.2(2)    |  |  |  |
| O15—Eu1—O1    | 80.68(17)  | O22—Eu1—O15  | 138.99(13) |  |  |  |
| O15—Eu1—O16   | 132.5(5)   | O2—Eu1—O1    | 76.2(2)    |  |  |  |
| O14—Eu1—O1    | 132.5(5)   | O2—Eu1—O14   | 138.99(13) |  |  |  |
| O16—Eu1—O14   | 80.68(17)  | O22—Eu1—O2   | 100.1(4)   |  |  |  |
| O15—Eu1—O14   | 80.68(17)  | O22—Eu1—O27  | 65.6(2)    |  |  |  |
| O16—Eu1—O1    | 80.68(17)  | O27—Eu1—O2   | 65.6(2)    |  |  |  |
| O14—Eu1—O3    | 66.3(2)    | O22—Eu1—O28  | 65.6(2)    |  |  |  |
| O1—Eu1—O3     | 66.3(2)    | O28—Eu1—O27  | 100.1(4)   |  |  |  |
| O16—Eu1—O3    | 66.3(2)    | O28—Eu1—O2   | 65.6(2)    |  |  |  |
| O15—Eu1—O3    | 66.3(2)    | O22—Eu1—O3   | 130.0(2)   |  |  |  |
| O2—Eu1—Eu13   | 33.13(9)   | O27—Eu1—O3   | 130.0(2)   |  |  |  |
| O27—Eu1—Eu12  | 85.93(19)  | O2—Eu1—O3    | 130.0(2)   |  |  |  |
| O2—Eu1—Eu12   | 85.93(19)  | O28—Eu1—O3   | 130.0(2)   |  |  |  |
| O22—Eu1—Eu11  | 33.13(9)   | O3—Eu1—Eu11  | 135        |  |  |  |
| O27—Eu1—Eu13  | 33.13(9)   | O3—Eu1—Eu13  | 135        |  |  |  |
| O28—Eu1—Eu13  | 85.93(19)  | O3—Eu1—Eu12  | 135        |  |  |  |
| O22—Eu1—Eu13  | 85.93(19)  | C1—O1—Eu1    | 136.5(10)  |  |  |  |
| O22—Eu1—Eu12  | 33.13(9)   | Eu18—O2—Eu13 | 113.73(18) |  |  |  |
| O28—Eu1—Eu12  | 33.13(9)   | Eu1—O2—Eu18  | 113.73(18) |  |  |  |
| O28—Eu1—Eu11  | 85.93(19)  | Eu1—O2—Eu13  | 113.73(18) |  |  |  |

Table S1. Selected bond lengths (Å) and angles (°) for Eu-MOF

| sensors based on MOFs                                                                                                           | <i>Ksv</i> (M <sup>-1</sup> ) | LOD     | Ref      |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|----------|
| Eu-MOF                                                                                                                          | $5.06 \times 10^5$            | 0.51µM  | thiswork |
| Zn-MOF                                                                                                                          | $1.326 \times 10^4$           | 0.882µM | 1        |
| $[H(H_2O)_8][DyZn_4(imdc)_4(im)_4]$                                                                                             | $9.29 	imes 10^5$             | _       | 2        |
| [Zn <sub>2</sub> Na <sub>2</sub> (TPHC)(4,4-Bipy)(DMF)]·8H <sub>2</sub> O                                                       | $5.77 	imes 10^4$             | 6.4µM   | 3        |
| MOF-808-Tb                                                                                                                      | $3.1 \times 10^{4}$           | _       | 4        |
| [Eu <sub>2</sub> (HICA)(BTEC)(H <sub>2</sub> O) <sub>2</sub> ] <sub>n</sub>                                                     | $2.028 \times 10^{4}$         | _       | 5        |
| Y <sub>10</sub> (C <sub>8</sub> H <sub>4</sub> O <sub>4</sub> ) <sub>6</sub> (CO <sub>3</sub> ) <sub>3</sub> (OH) <sub>12</sub> | $1.905 \times 10^{4}$         | 12.7µM  | 6        |
| Eu-MOF/EDTA-NiAl-CLDH-M                                                                                                         | $1.3 \times 10^{4}$           | 0.15µM  | 7        |

Table S2. A comparison of MOFs-based luminescent sensors for detection Fe<sup>3+</sup>.

Table S3. A comparison of MOFs-based luminescent sensors for detection TNP.

| sensors based on MOFs                          | Ksv (M <sup>-1</sup> ) | LOD                             | Ref      |
|------------------------------------------------|------------------------|---------------------------------|----------|
| Eu-MOF                                         | $1.92 \times 10^{4}$   | 1.93×10 <sup>-6</sup> M         | thiswork |
| $[Cd(3-bpd)(N(CN)_2)_2]_n$                     | $7.16 \times 10^{4}$   | 6×10 <sup>-5</sup> M            | 8        |
| TMU-34                                         | $4.9 \times 10^{4}$    | $8.1 \times 10^{-6} \mathrm{M}$ | 9        |
| ${[Cd_3(bmipia)_2] \cdot 10DMF \cdot 5H_2O}n$  | $3.82 \times 10^{4}$   | _                               | 10       |
| EuL                                            | 1.36×10 <sup>3</sup>   | 1×10 <sup>-5</sup> M            | 11       |
| TbL                                            | 4.995×10 <sup>3</sup>  | 5×10-6M                         | 11       |
| $[{Zn(BINDI)_{0.5}(bpe)_{0.5}} \cdot 3H_2O]_n$ | $1.29 \times 10^{4}$   | 1.5ppm                          | 12       |

Table S4. HOMO and LUMO energy of NAEs at B3LYP/6-31G\* level of theory.

| NAEs    | HOMO (eV) | LUMO (eV) | Band gap (eV) |
|---------|-----------|-----------|---------------|
| 4-NT    | -7.65502  | -2.79225  | 4.86277       |
| 3-NT    | -7.55031  | -2.83893  | 4.71137       |
| NB      | -7.88778  | -2.91263  | 4.97515       |
| 2,6-DNT | -7.6448   | -3.2877   | 4.3571        |
| 1,3-DNB | -7.9855   | -3.4311   | 4.5544        |
| TNP     | -8.59516  | -4.32093  | 4.27423       |

### Reference

- 1. B. B. Rath and J. J. Vittal, *Inorganic Chemistry*, 2020, **59**, 8818-8826.
- Y.-F. Li, D. Wang, Z. Liao, Y. Kang, W.-H. Ding, X.-J. Zheng and L.-P. Jin, *Journal of Materials Chemistry C*, 2016, 4, 4211-4217.
- 3. C. Yu, X. Sun, L. Zou, G. Li, L. Zhang and Y. Liu, *Inorganic Chemistry*, 2019, **58**, 4026-4032.
- 4. J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying, Y. Wang and D.

Zhao, Chemical Communications, 2019, 55, 4727-4730.

- 5. H. Yu, M. Fan, Q. Liu, Z. Su, X. Li, Q. Pan and X. Hu, *Inorganic Chemistry*, 2020, **59**, 2005-2010.
- 6. W. Chen, L. Li, X.-X. Li, L.-D. Lin, G. Wang, Z. Zhang, L. Li and Y. Yu, *Crystal Growth & Design*, 2019, **19**, 4754-4764.
- 7. W. Yang, J. Li, Z. Xu, J. Yang, Y. Liu and L. Liu, *Journal of Materials Chemistry C*, 2019, 7, 10297-10308.
- 8. S. Halder, P. Ghosh, C. Rizzoli, P. Banerjee and P. Roy, *Polyhedron*, 2017, 123, 217-225.
- 9. S. A. A. Razavi, A. Morsali and M. Piroozzadeh, *Inorganic Chemistry*, 2022, **61**, 7820-7834.
- M.-Y. Zhang, R.-D. Dai, B.-J. Li, T.-X. Hang, J.-X. Xie, J. Lü and X.-D. Zhu, *Crystal Growth & Design*, 2020, 20, 1373-1377.
- 11. W. Liu, X. Huang, C. Chen, C. Xu, J. Ma, L. Yang, W. Wang, W. Dou and W. Liu, *Chemistry A European Journal*, 2019, **25**, 1090-1097.
- S. S. Dhankhar, N. Sharma and C. M. Nagaraja, *Inorganic Chemistry Frontiers*, 2019, 6, 1058-1067.